Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 144
Filter
1.
Phys Med ; 125: 104503, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39197263

ABSTRACT

PURPOSE: Image-based data mining (IBDM) is a voxel-based analysis technique to investigate dose-response. Most often, IBDM uses radiotherapy planning CTs because of their broad accessibility, however, it was unknown whether CT provided sufficient soft tissue contrast for brain IBDM. This study evaluates whether MR-based IBDM improves upon CT-based IBDM for studies of children with brain tumours. METHODS: We compared IBDM pipelines using either CT- or MRI-based spatial normalisation in 128 children (ages 3.3-19.7 years) who received photon radiotherapy for primary brain tumours at a single institution. We quantified spatial-normalisation accuracy using contour comparison measures (centre-of-mass separation, average contour distance-to-agreement (DTavg), and Hausdorff distance) at multiple anatomic loci. We performed an end-to-end test of CT- and MRI-IBDM using modified clinical dose distributions and simulated effect labels to detect associations in pre-defined anatomic loci. Accuracy was assessed via sensitivity and specificity. RESULTS: Spatial normalisation accuracy was comparable for both modalities, with a significant but small improvement for MRI compared to CT in all structures except the brainstem. The median (range) difference between the DTavg for the two pipelines was 0.37 (0.00-2.91) mm. The end-to-end test revealed no significant difference in sensitivity of the IBDM-identified regions for the two pipelines. Specificity slightly improved for MR-IBDM at the 99% significance level. CONCLUSION: CT-based IBDM was comparable to MR-based IBDM, despite a small advantage in spatial normalisation accuracy with MRI. The use of CT-IBDM over MR-IBDM is useful for multi-institutional retrospective IBDM studies, where the availability of standardised MRI data can be limited.

2.
Int J Part Ther ; 12: 100107, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38952615

ABSTRACT

Purpose: It is known that radiation to dentofacial structures during childhood can lead to developmental disturbances. However, this appears to be a relatively subordinated research subject. For this reason, this review aims to establish the current evidence base on the effect of PBT on dentofacial development in paediatric patients treated for cancer in the head and neck region. Materials and methods: A comprehensive search was undertaken to identify both published and unpublished studies or reports. A single reviewer completed initial screening of abstracts; 2 independent reviewers completed secondary screening and data extraction. A narrative synthesis was then conducted. Results: 82 records were screened in total, resulting in 11 included articles. These articles varied in terms of study design and reporting quality. Owing to both poor study reporting and limited patient numbers, it is not possible to determine the effect of cancer diagnosis, chronological age at treatment, radiation dose or treatment modality on the incidence of facial deformation or dental development anomalies. Conclusion: Disturbances in dentofacial development are an under-reported toxicity in paediatric cancer survivors treated with PBT to the head and neck. There is a need for more research on dentofacial toxicity reporting, focused on the impact of treatment age, radiation dose, concurrent therapies, and the subsequent impact on quality of life.

3.
Radiother Oncol ; 199: 110462, 2024 10.
Article in English | MEDLINE | ID: mdl-39069083

ABSTRACT

BACKGROUND AND PURPOSE: Radiation-induced alopecia (RIA) is one of the most frequent and upsetting cosmetic side effects after radiotherapy (RT) for brain cancer. We report the incidence of RIA in a cohort of brain tumours patients treated with Proton Therapy (PT) and externally validate published NTCP models of grade 2 (G2) RIA for their implementation in clinical practice. METHODS: Data for patients treated for brain tumours with scanning beam PT between 2018 and 2022 were extracted. Acute, late and permanent RIA events were evaluated according to CTCAE 5.0. Lyman-Kutcher-Burman (LKB) and multivariable logistic regression (MLR) published models were computed from the relative dose-surface histogram of the scalp. External validity of models was assessed in terms of discrimination and calibration. RESULTS: In the 264 patients analysed, rates of any grade acute (≤90 days after PT completion), late (>90 days) and permanent RIA (persisting for> 12 months) were 61.8 %, 24.7 % and 14.4 %, respectively. In our independent cohort, LKB- and MLR-NTCP showed a good discrimination for G2 RIA (0.71≤ROC-AUC≤0.83) while model calibration was unsatisfactory possibly due to a different outcome evaluation between training and validation cohorts, as well as differences in clinical and treatment related variables between the two groups. CONCLUSIONS: Despite the reasonable sensitivity and specificity of the NTCP models for RIA in the validation cohort, our study emphasizes the significance of differences between the cohorts utilized for model development and validation. Specifically, variations in the reporting of clinical outcomes inevitably jeopardize the validation of NTCP models. A standardize and objective RIA scoring system is essential.


Subject(s)
Alopecia , Brain Neoplasms , Proton Therapy , Humans , Brain Neoplasms/radiotherapy , Male , Female , Middle Aged , Alopecia/etiology , Incidence , Proton Therapy/adverse effects , Proton Therapy/methods , Adult , Aged , Radiation Injuries/etiology , Radiotherapy Dosage , Aged, 80 and over
6.
Phys Imaging Radiat Oncol ; 30: 100587, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38818304

ABSTRACT

Background and purpose: Motion management techniques are important to spare the healthy tissue adequately. However, they are complex and need dedicated quality assurance. The aim of this study was to create a dynamic phantom designed for quality assurance and to replicate a patient's size, anatomy, and tissue density. Materials and methods: A computed tomography (CT) scan of a cancer patient was used to create molds for the lungs, heart, ribs, and vertebral column via additive manufacturing. A pump system and software were developed to simulate respiratory dynamics. The extent of respiratory motion was quantified using a 4DCT scan. End-to-end tests were conducted to evaluate two motion management techniques for lung stereotactic body radiotherapy (SBRT). Results: The chest wall moved between 4 mm and 13 mm anteriorly and 2 mm to 7 mm laterally during the breathing. The diaphragm exhibited superior-inferior movement ranging from 5 mm to 16 mm in the left lung and 10 mm to 36 mm in the right lung. The left lung tumor displaced ± 7 mm superior-inferiorly and anterior-posteriorly. The CT numbers were for lung: -716 ± 108 HU (phantom) and -713 ± 70 HU (patient); bone: 460 ± 20 HU (phantom) and 458 ± 206 HU (patient); soft tissue: 92 ± 9 HU (phantom) and 60 ± 25 HU (patient). The end-to-end testing showed an excellent agreement between the measured and the calculated dose for ion chamber and film dosimetry. Conclusions: The phantom is recommended for quality assurance, evaluating the institution's specific planning and motion management strategies either through end-to-end testing or as an external audit phantom.

7.
Neurooncol Pract ; 11(2): 115-124, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38496911

ABSTRACT

Background: The outcomes of nonbenign (WHO Grades 2 and 3 [G2, G3]) meningiomas are suboptimal and radiotherapy (RT) dose intensification strategies have been investigated. The purpose of this review is to report on clinical practice and outcomes with particular attention to RT doses and techniques. Methods: The PICO criteria (Population, Intervention, Comparison, and Outcomes) were used to frame the research question, directed at outlining the clinical outcomes in patients with G2-3 meningiomas treated with RT. The same search strategy was run in Embase and MEDLINE and, after deduplication, returned 1 807 records. These were manually screened for relevance and 25 were included. Results: Tumor outcomes and toxicities are not uniformly reported in the selected studies since different endpoints and time points have been used by different authors. Many risk factors for worse outcomes are described, the most common being suboptimal RT. This includes no or delayed RT, low doses, and older techniques. A positive association between RT dose and progression-free survival (PFS) has been highlighted by analyzing the studies in this review (10/25) that report the same endpoint (5y-PFS). Conclusions: This literature review has shown that standard practice RT leads to suboptimal tumor control rates in G2-3 meningiomas, with a significant proportion of disease recurring after a relatively short follow-up. Randomized controlled trials are needed in this setting to define the optimal RT approach. Given the increasing data to suggest a benefit of higher RT doses for high-risk meningiomas, novel RT technologies with highly conformal dose distributions are preferential to achieve optimal target coverage and organs at risk sparing.

8.
Radiother Oncol ; 190: 109963, 2024 01.
Article in English | MEDLINE | ID: mdl-38406888

ABSTRACT

BACKGROUND: Implementation of daily cone-beam CT (CBCT) into clinical practice in paediatric image-guided radiotherapy (IGRT) lags behind compared to adults. Surveys report wide variation in practice for paediatric IGRT and technical information remains unreported. In this study we report on technical settings from applied paediatric CBCT protocols and review the literature for paediatric CBCT protocols. METHODS: From September to October 2022, a survey was conducted among 246 SIOPE-affiliated centres across 35 countries. The survey consisted of 3 parts: 1) baseline information; technical CBCT exposure settings and patient set-up procedure for 2) brain/head, and 3) abdomen. Descriptive statistics was used to summarise current practice. The literature was reviewed systematically with two reviewers obtaining consensus RESULTS: The literature search revealed 22 papers concerning paediatric CBCT protocols. Seven papers focused on dose-optimisation. Responses from 50/246 centres in 25/35 countries were collected: 44/50 treated with photons and 10/50 with protons. In total, 48 brain/head and 53 abdominal protocols were reported. 42/50 centres used kV-CBCT for brain/head and 35/50 for abdomen; daily CBCT was used for brain/head = 28/48 (58%) and abdomen = 33/53 62%. Greater consistency was seen in brain/head protocols (dose range 0.32 - 67.7 mGy) compared to abdominal (dose range 0.27 - 119.7 mGy). CONCLUSION: Although daily CBCT is now widely used in paediatric IGRT, our survey demonstrates a wide range of technical settings, suggesting an unmet need to optimise paediatric IGRT protocols. This is in accordance with the literature. However, there are only few paediatric optimisation studies suggesting that dose reduction is possible while maintaining image quality.


Subject(s)
Radiotherapy, Image-Guided , Spiral Cone-Beam Computed Tomography , Adult , Humans , Child , Radiotherapy, Image-Guided/methods , Radiotherapy Planning, Computer-Assisted/methods , Abdomen , Cone-Beam Computed Tomography/methods , Europe , Phantoms, Imaging , Radiotherapy Dosage , Review Literature as Topic
9.
Br J Radiol ; 97(1156): 757-762, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38407369

ABSTRACT

OBJECTIVES: Metallic implants cause artefacts and distortion on MRI. To ensure accurate dose delivery and plan adaptation on an MR Linac, there is a need to evaluate distortion caused. METHODS: Participants were imaged on an MR Linac (Elekta Unity, Elekta AB Stockholm). Three sequences were evaluated. Two vendor supplied (T2W TSE 3D), and one T2W TSE 3D optimized to reduce metal artefact distortions. Images were rigidly registered to CT images by a single observer, using bony anatomy. Three coronal and three axial images were selected, and six paired, adjacent, bony landmarks were identified on each slice. Images bisecting treatment isocentre were included. Difference between landmark coordinates was taken to be measure of distortion. RESULTS: Five observers participated. Thirty six pairs of bony landmarks were identified. Median difference in position of landmarks was ≤3 mm (range 0.3-4.4 mm). One-way analysis of variance (ANOVA) between observer means showed no significant variation between sequences or patients (P = 1.26 in plane, P = 0.11 through plane). Interobserver intra class correlation (ICC) was 0.70 in-plane and 0.78 through-plane. Intra-observer ICC for three observers was 0.76, 0.81, 0.83, showing moderate to good reliability on this small cohort. CONCLUSIONS: This in-vivo feasibility study suggests distortion due to metallic hip prosthesis is not an obstacle for pelvic radiotherapy on an MR Linac. Research on the impact on plan quality is warranted. ADVANCES IN KNOWLEDGE: This work supports feasibility of treating patients with metallic hip prosthesis on an MR Linac.


Subject(s)
Hip Prosthesis , Prostatic Neoplasms , Male , Humans , Hip Prosthesis/adverse effects , Reproducibility of Results , Magnetic Resonance Imaging/methods , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Phantoms, Imaging , Particle Accelerators
11.
Eur J Heart Fail ; 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38059343

ABSTRACT

Cardio-oncology is a rapidly growing field of cardiovascular (CV) medicine that has resulted from the continuously increasing clinical demand for specialized CV evaluation, prevention and management of patients suffering or surviving from malignant diseases. Dealing with CV disease in patients with cancer requires special knowledge beyond that included in the general core curriculum for cardiology. Therefore, the European Society of Cardiology (ESC) has developed a special core curriculum for cardio-oncology, a consensus document that defines the level of experience and knowledge required for cardiologists in this particular field. It is structured into 8 chapters, including (i) principles of cancer biology and therapy; (ii) forms and definitions of cancer therapy-related cardiovascular toxicity (CTR-CVT); (iii) risk stratification, prevention and monitoring protocols for CTR-CVT; (iv) diagnosis and management of CV disease in patients with cancer; (v) long-term survivorship programmes and cardio-oncology rehabilitation; (vi) multidisciplinary team management of special populations; (vii) organization of cardio-oncology services; (viii) research in cardio-oncology. The core curriculum aims at promoting standardization and harmonization of training and evaluation in cardio-oncology, while it further provides the ground for an ESC certification programme designed to recognize the competencies of certified specialists.

12.
Clin Transl Radiat Oncol ; 43: 100681, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37790584

ABSTRACT

Background and purpose: Children receiving radiotherapy for head-and-neck tumours often experience severe dentofacial side effects. Despite this, recommendations for contouring and dose constraints to dentofacial structures are lacking in clinical practice. We report on a survey aiming to understand current practice in contouring and dose assessment to dentofacial structures. Methods: A digital survey was distributed to European Society for Paediatric Oncology members of the Radiation Oncology Working Group, and member-affiliated centres in Europe, Australia, and New Zealand. The questions focused on clinical practice and aimed to establish areas for future development. Results: Results from 52 paediatric radiotherapy centres across 27 countries are reported. Only 29/52 centres routinely delineated some dentofacial structures, with the most common being the mandible (25 centres), temporo-mandibular joint (22), dentition (13), orbit (10) and maxillary bone (eight). For most bones contoured, an 'As Low As Reasonably Achievable' dose objective was implemented. Only four centres reported age-adapted dose constraints.The largest barrier to clinical implementation of dose constraints was firstly, the lack of contouring guidance (49/52, 94%) and secondly, that delineation is time-consuming (33/52, 63%). Most respondents who routinely contour dentofacial structures (25/27, 90%) agreed a contouring atlas would aid delineation. Conclusion: Routine delineation of dentofacial structures is infrequent in paediatric radiotherapy. Based on survey findings, we aim to 1) define a consensus-contouring atlas for dentofacial structures, 2) develop auto-contouring solutions for dentofacial structures to aid clinical implementation, and 3) carry out treatment planning studies to investigate the importance of delineation of these structures for planning optimisation.

14.
Breast ; 72: 103578, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37713940

ABSTRACT

BACKGROUND: Normal tissue complication probability (NTCP) models can be useful to estimate the risk of fibrosis after breast-conserving surgery (BCS) and radiotherapy (RT) to the breast. However, they are subject to uncertainties. We present the impact of contouring variation on the prediction of fibrosis. MATERIALS AND METHODS: 280 breast cancer patients treated BCS-RT were included. Nine Clinical Target Volume (CTV) contours were created for each patient: i) CTV_crop (reference), cropped 5 mm from the skin and ii) CTV_skin, uncropped and including the skin, iii) segmenting the 95% isodose (Iso95%) and iv) 3 different auto-contouring atlases generating uncropped and cropped contours (Atlas_skin/Atlas_crop). To illustrate the impact of contour variation on NTCP estimates, we applied two equations predicting fibrosis grade ≥ 2 at 5 years, based on Lyman-Kutcher-Burman (LKB) and Relative Seriality (RS) models, respectively, to each contour. Differences were evaluated using repeated-measures ANOVA. For completeness, the association between observed fibrosis events and NTCP estimates was also evaluated using logistic regression. RESULTS: There were minimal differences between contours when the same contouring approach was followed (cropped and uncropped). CTV_skin and Atlas_skin contours had lower NTCP estimates (-3.92%, IQR 4.00, p < 0.05) compared to CTV_crop. No significant difference was observed for Atlas_crop and Iso95% contours compared to CTV_crop. For the whole cohort, NTCP estimates varied between 5.3% and 49.5% (LKB) or 2.2% and 49.6% (RS) depending on the choice of contours. NTCP estimates for individual patients varied by up to a factor of 4. Estimates from "skin" contours showed higher agreement with observed events. CONCLUSION: Contour variations can lead to significantly different NTCP estimates for breast fibrosis, highlighting the importance of standardising breast contours before developing and/or applying NTCP models.


Subject(s)
Breast Neoplasms , Fibrocystic Breast Disease , Female , Humans , Radiotherapy Dosage , Breast Neoplasms/radiotherapy , Breast Neoplasms/surgery , Breast/diagnostic imaging , Radiotherapy Planning, Computer-Assisted , Probability , Fibrosis
16.
Radiother Oncol ; 188: 109868, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37683811

ABSTRACT

Voxel-based analysis (VBA) allows the full, 3-dimensional, dose distribution to be considered in radiotherapy outcome analysis. This provides new insights into anatomical variability of pathophysiology and radiosensitivity by removing the need for a priori definition of organs assumed to drive the dose response associated with patient outcomes. This approach may offer powerful biological insights demonstrating the heterogeneity of the radiobiology across tissues and potential associations of the radiotherapy dose with further factors. As this methodological approach becomes established, consideration needs to be given to translating VBA results to clinical implementation for patient benefit. Here, we present a comprehensive roadmap for VBA clinical translation. Technical validation needs to demonstrate robustness to methodology, where clinical validation must show generalisability to external datasets and link to a plausible pathophysiological hypothesis. Finally, clinical utility requires demonstration of potential benefit for patients in order for successful translation to be feasible. For each step on the roadmap, key considerations are discussed and recommendations provided for best practice.

17.
Phys Med ; 112: 102652, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37552912

ABSTRACT

PURPOSE: The National Health Service (NHS) in the United Kingdom (UK) is aiming to be carbon net zero by 2040 to help limit the dangerous effects of climate change. Radiotherapy contributes to this with potential sources quantified here. METHOD: Activity data for 42 patients from within the breast IMRT and prostate VMAT pathways were collected. Data for 20 prostate patients was also collected from 3 other centres to enable cross centre comparison. A process-based, bottom-up approach was used to calculate the carbon footprint. Additionally, patients were split into pre-COVID and COVID groups to assess the impact of protocol changes due to the pandemic. RESULTS: The calculated carbon footprint for prostate and breast pre-COVID were 148 kgCO2e and 101 kgCO2e respectively, and 226 kgCO2e and 75 kgCO2e respectively during COVID. The energy usage by the linac during treatment for a total course of radiotherapy for prostate treatments was 2-3 kWh and about 1 kWh for breast treatments. Patient travel made up the largest proportion (70-80%) of the calculated carbon footprint, with linac idle power second with âˆ¼ 10% and PPE and SF6 leakage were both between 2 and 4%. CONCLUSION: These initial findings highlight that the biggest contributor to the external beam radiotherapy carbon footprint was patient travel, which may motivate increased used of hypofractionation. Many assumptions and boundaries have been set on the data gathered, which limit the wider application of these results. However, they provide a useful foundation for future more comprehensive life cycle assessments.


Subject(s)
COVID-19 , Carbon Footprint , Male , Humans , State Medicine , COVID-19/radiotherapy , United Kingdom , Prostate
18.
Radiother Oncol ; 185: 109734, 2023 08.
Article in English | MEDLINE | ID: mdl-37301263

ABSTRACT

The use of breath-hold techniques in radiotherapy, such as deep-inspiration breath hold, is increasing although guidelines for clinical implementation are lacking. In these recommendations, we aim to provide an overview of available technical solutions and guidance for best practice in the implementation phase. We will discuss specific challenges in different tumour sites including factors such as staff training and patient coaching, accuracy, and reproducibility. In addition, we aim to highlight the need for further research in specific patient groups. This report also reviews considerations for equipment, staff training and patient coaching, as well as image guidance for breath-hold treatments. Dedicated sections for specific indications, namely breast cancer, thoracic and abdominal tumours are also included.


Subject(s)
Breast Neoplasms , Breath Holding , Humans , Female , Reproducibility of Results , Radiotherapy Planning, Computer-Assisted/methods , Breast Neoplasms/radiotherapy , Radiotherapy Dosage
19.
Phys Imaging Radiat Oncol ; 26: 100439, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37124167

ABSTRACT

Background and purpose: Organ motion compromises accurate particle therapy delivery. This study reports on the practice patterns for real-time intrafractional motion-management in particle therapy to evaluate current clinical practice and wishes and barriers to implementation. Materials and methods: An institutional questionnaire was distributed to particle therapy centres worldwide (7/2020-6/2021) asking which type(s) of real-time respiratory motion management (RRMM) methods were used, for which treatment sites, and what were the wishes and barriers to implementation. This was followed by a three-round DELPHI consensus analysis (10/2022) to define recommendations on required actions and future vision. With 70 responses from 17 countries, response rate was 100% for Europe (23/23 centres), 96% for Japan (22/23) and 53% for USA (20/38). Results: Of the 68 clinically operational centres, 85% used RRMM, with 41% using both rescanning and active methods. Sixty-four percent used active-RRMM for at least one treatment site, mostly with gating guided by an external marker. Forty-eight percent of active-RRMM users wished to expand or change their RRMM technique. The main barriers were technical limitations and limited resources. From the DELPHI analysis, optimisation of rescanning parameters, improvement of motion models, and pre-treatment 4D evaluation were unanimously considered clinically important future focus. 4D dose calculation was identified as the top requirement for future commercial treatment planning software. Conclusion:  A majority of particle therapy centres have implemented RRMM. Still, further development and clinical integration were desired by most centres. Joint industry, clinical and research efforts are needed to translate innovation into efficient workflows for broad-scale implementation.

SELECTION OF CITATIONS
SEARCH DETAIL