Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ultramicroscopy ; 262: 113979, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38703575

ABSTRACT

We built a custom-made holder with a Hall-effect sensor to measure the single point magnetic flux density inside a transmission electron microscope (TEM, JEM-F200, JEOL). The measurement point is at the same place as the sample inside the TEM. We utilized information collected with the Hall-effect sensor holder to study magnetic domain wall (DW) dynamics by in-situ Lorentz microscopy. We generated an external magnetic field to the sample using the objective lens (OL) of the TEM. Based on our measurements with the Hall-effect sensor holder, the OL has nearly linear response, and when it is switched off, the strength of the magnetic field in the sample region is very close to 0 mT. A ferritic-pearlitic sample studied has globular and lamellar cementite (Fe3C) carbides in the ferrite matrix. Based on the in-situ Lorentz microscopy experiments, DWs in the ferritic matrix perpendicular to the lamellar carbides start to move first at ∼10 mT. At 160 mT, DWs inside the globular carbide start to disappear, and the saturation occurs at ∼210 mT. At 288 mT, the DWs parallel to the lamellar carbides still exist. Thus, these lamellar carbides are very strong pinning sites for DWs. We also run dynamical micromagnetic simulations to reproduce the DW disappearance in the globular carbide. As in the in-situ experiments, the DWs stay stable until the external field reaches the magnitude of 160 mT, and the DWs disappear before the field is 214 mT. In general, the micromagnetic simulations supported very well the interpretation of the experimental findings.

2.
Mol Biol Cell ; 34(9): br13, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37342871

ABSTRACT

Investigation of nuclear lamina architecture relies on superresolved microscopy. However, epitope accessibility, labeling density, and detection precision of individual molecules pose challenges within the molecularly crowded nucleus. We developed iterative indirect immunofluorescence (IT-IF) staining approach combined with expansion microscopy (ExM) and structured illumination microscopy to improve superresolution microscopy of subnuclear nanostructures like lamins. We prove that ExM is applicable in analyzing highly compacted nuclear multiprotein complexes such as viral capsids and provide technical improvements to ExM method including three-dimensional-printed gel casting equipment. We show that in comparison with conventional immunostaining, IT-IF results in a higher signal-to-background ratio and a mean fluorescence intensity by improving the labeling density. Moreover, we present a signal-processing pipeline for noise estimation, denoising, and deblurring to aid in quantitative image analyses and provide this platform for the microscopy imaging community. Finally, we show the potential of signal-resolved IT-IF in quantitative superresolution ExM imaging of nuclear lamina and reveal nanoscopic details of the lamin network organization-a prerequisite for studying intranuclear structural coregulation of cell function and fate.


Subject(s)
Microscopy , Nuclear Lamina , Microscopy/methods , Cell Nucleus , Lamins , Image Processing, Computer-Assisted
3.
Article in English | MEDLINE | ID: mdl-32784137

ABSTRACT

Collaborative filters perform denoising through transform-domain shrinkage of a group of similar patches extracted from an image. Existing collaborative filters of stationary correlated noise have all used simple approximations of the transform noise power spectrum adopted from methods which do not employ patch grouping and instead operate on a single patch. We note the inaccuracies of these approximations and introduce a method for the exact computation of the noise power spectrum. Unlike earlier methods, the calculated noise variances are exact even when noise in one patch is correlated with noise in any of the other patches. We discuss the adoption of the exact noise power spectrum within shrinkage, in similarity testing (patch matching), and in aggregation. We also introduce effective approximations of the spectrum for faster computation. Extensive experiments support the proposed method over earlier crude approximations used by image denoising filters such as Block-Matching and 3D-filtering (BM3D), demonstrating dramatic improvement in many challenging conditions.

4.
IEEE Trans Image Process ; 23(8): 3459-67, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24808411

ABSTRACT

We consider the estimation of signal-dependent noise from a single image. Unlike conventional algorithms that build a scatterplot of local mean-variance pairs from either small or adaptively selected homogeneous data samples, our proposed approach relies on arbitrarily large patches of heterogeneous data extracted at random from the image. We demonstrate the feasibility of our approach through an extensive theoretical analysis based on mixture of Gaussian distributions. A prototype algorithm is also developed in order to validate the approach on simulated data as well as on real camera raw images.


Subject(s)
Algorithms , Data Interpretation, Statistical , Image Interpretation, Computer-Assisted/methods , Models, Statistical , Computer Simulation , Image Enhancement/methods , Reproducibility of Results , Sample Size , Sensitivity and Specificity , Signal-To-Noise Ratio
SELECTION OF CITATIONS
SEARCH DETAIL
...