Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 67(3): 2220-2235, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38284169

ABSTRACT

Thymic stromal lymphopoietin (TSLP) is an epithelial-derived pro-inflammatory cytokine involved in the development of asthma and other atopic diseases. We used Bicycle Therapeutics' proprietary phage display platform to identify bicyclic peptides (Bicycles) with high affinity for TSLP, a target that is difficult to drug with conventional small molecules due to the extended protein-protein interactions it forms with both receptors. The hit series was shown to bind to TSLP in a hotspot, that is also used by IL-7Rα. Guided by the first X-ray crystal structure of a small peptide binding to TSLP and the identification of key metabolites, we were able to improve the proteolytic stability of this series in lung S9 fractions without sacrificing binding affinity. This resulted in the potent Bicycle 46 with nanomolar affinity to TSLP (KD = 13 nM), low plasma clearance of 6.4 mL/min/kg, and an effective half-life of 46 min after intravenous dosing to rats.


Subject(s)
Asthma , Thymic Stromal Lymphopoietin , Animals , Rats , Asthma/drug therapy , Bicycling , Cytokines/metabolism , Peptides, Cyclic/chemistry , Peptides, Cyclic/metabolism
2.
Sci Rep ; 11(1): 16767, 2021 08 18.
Article in English | MEDLINE | ID: mdl-34408239

ABSTRACT

Regulatory T cells (Tregs) are the key cells regulating peripheral autoreactive T lymphocytes. Tregs exert their function by suppressing effector T cells. Tregs have been shown to play essential roles in the control of a variety of physiological and pathological immune responses. However, Tregs are unstable and can lose the expression of FOXP3 and suppressive functions as a consequence of outer stimuli. Available literature suggests that secreted proteins regulate Treg functional states, such as differentiation, proliferation and suppressive function. Identification of secreted proteins that affect Treg cell function are highly interesting for both therapeutic and diagnostic purposes in either hyperactive or immunosuppressed populations. Here, we report a phenotypic screening of a human secretome library in human Treg cells utilising a high throughput flow cytometry technology. Screening a library of 575 secreted proteins allowed us to identify proteins stabilising or destabilising the Treg phenotype as suggested by changes in expression of Treg marker proteins FOXP3 and/or CTLA4. Four proteins including GDF-7, IL-10, PAP and IFNα-7 were identified as positive regulators that increased FOXP3 and/or CTLA4 expression. PAP is a phosphatase. A catalytic-dead version of the protein did not induce an increase in FOXP3 expression. Ten interferon proteins were identified as negative regulators that reduced the expression of both CTLA4 and FOXP3, without affecting cell viability. A transcriptomics analysis supported the differential effect on Tregs of IFNα-7 versus other IFNα proteins, indicating differences in JAK/STAT signaling. A conformational model experiment confirmed a tenfold reduction in IFNAR-mediated ISG transcription for IFNα-7 compared to IFNα-10. This further strengthened the theory of a shift in downstream messaging upon external stimulation. As a summary, we have identified four positive regulators of FOXP3 and/or CTLA4 expression. Further exploration of these Treg modulators and their method of action has the potential to aid the discovery of novel therapies for both autoimmune and infectious diseases as well as for cancer.


Subject(s)
Bone Morphogenetic Proteins/immunology , Growth Differentiation Factors/immunology , Immunologic Factors/immunology , Interferon-alpha/immunology , Pancreatitis-Associated Proteins/immunology , T-Lymphocytes, Regulatory/immunology , Bone Morphogenetic Proteins/genetics , Growth Differentiation Factors/genetics , Humans , Immunologic Factors/genetics , Interferon-alpha/genetics , Pancreatitis-Associated Proteins/genetics
3.
J Med Chem ; 64(18): 13807-13829, 2021 09 23.
Article in English | MEDLINE | ID: mdl-34464130

ABSTRACT

Inverse agonists of the nuclear receptor RORC2 have been widely pursued as a potential treatment for a variety of autoimmune diseases. We have discovered a novel series of isoindoline-based inverse agonists of the nuclear receptor RORC2, derived from our recently disclosed RORC2 inverse agonist 2. Extensive structure-activity relationship (SAR) studies resulted in AZD0284 (20), which combined potent inhibition of IL-17A secretion from primary human TH17 cells with excellent metabolic stability and good PK in preclinical species. In two preclinical in vivo studies, compound 20 reduced thymocyte numbers in mice and showed dose-dependent reduction of IL-17A containing γδ-T cells and of IL-17A and IL-22 RNA in the imiquimod induced inflammation model. Based on these data and a favorable safety profile, 20 was progressed to phase 1 clinical studies.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Inflammation/drug therapy , Isoindoles/therapeutic use , Orphan Nuclear Receptors/agonists , Sulfones/therapeutic use , Animals , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/pharmacokinetics , Dogs , Drug Inverse Agonism , Female , Humans , Imiquimod , Inflammation/chemically induced , Isoindoles/cerebrospinal fluid , Isoindoles/chemical synthesis , Isoindoles/pharmacokinetics , Male , Mice, Inbred C57BL , Molecular Structure , Rats, Wistar , Structure-Activity Relationship , Sulfones/cerebrospinal fluid , Sulfones/chemical synthesis , Sulfones/pharmacokinetics , Th17 Cells , Thymocytes/drug effects
4.
SLAS Discov ; 25(6): 634-645, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32189556

ABSTRACT

Human rhinovirus (RV) is the most common cause of acute upper respiratory tract infections and has recently been shown to play a significant role in exacerbations of asthma and chronic obstructive pulmonary disease (COPD). There is a significant unmet medical need for agents for the prevention and/or treatment of exacerbations triggered by human RV infection. Phenotypic drug discovery programs using different perturbation modalities, for example, siRNA, small-molecule compounds, and CRISPR, hold significant value for identifying novel drug targets. We have previously reported the identification of lanosterol synthase as a novel regulator of RV2 replication through a phenotypic screen of a library of siRNAs against druggable genes in normal human bronchial epithelial (NHBE) cells. Here, we describe a follow-up phenotypic screen of small-molecule compounds that are annotated to be pharmacological regulators of target genes that were identified to significantly affect RV2 replication in the siRNA primary screen of 10,500 druggable genes. Two hundred seventy small-molecule compounds selected for interacting with 122 target gene hits were screened in the primary RV2 assay in NHBE cells by quantifying viral replication via in situ hybridization followed by secondary quantitative PCR-based assays for RV2, RV14, and RV16. The described follow-up phenotypic screening allowed us to identify Fms-related tyrosine kinase 4 (FLT4) as a novel target regulating RV replication. We demonstrate that a combination of siRNA and small-molecule compound screening models is a useful phenotypic drug discovery approach for the identification of novel drug targets.


Subject(s)
Intramolecular Transferases/genetics , Rhinovirus/drug effects , Virus Diseases/drug therapy , Virus Replication/drug effects , Bronchi/drug effects , Bronchi/virology , CRISPR-Cas Systems/genetics , Epithelial Cells/drug effects , Epithelial Cells/virology , Gene Regulatory Networks/drug effects , Humans , Molecular Targeted Therapy , RNA, Small Interfering/genetics , Rhinovirus/pathogenicity , Small Molecule Libraries/pharmacology , Virus Diseases/genetics , Virus Diseases/virology
5.
J Med Chem ; 61(17): 7796-7813, 2018 09 13.
Article in English | MEDLINE | ID: mdl-30095900

ABSTRACT

Retinoic acid receptor related orphan receptor γt (RORγt), has been identified as the master regulator of TH17-cell function and development, making it an attractive target for the treatment of autoimmune diseases by a small-molecule approach. Herein, we describe our investigations on a series of 4-aryl-thienyl acetamides, which were guided by insights from X-ray cocrystal structures. Efforts in targeting the cofactor-recruitment site from the 4-aryl group on the thiophene led to a series of potent binders with nanomolar activity in a primary human-TH17-cell assay. The observation of a DMSO molecule binding in a subpocket outside the LBD inspired the introduction of an acetamide into the benzylic position of these compounds. Hereby, a hydrogen-bond interaction of the introduced acetamide oxygen with the backbone amide of Glu379 was established. This greatly enhanced the cellular activity of previously weakly cell-active compounds. The best compounds combined potent inhibition of IL-17 release with favorable PK in rodents, with compound 32 representing a promising starting point for future investigations.


Subject(s)
Acetamides/pharmacology , Drug Design , Drug Inverse Agonism , Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Protein Conformation , Th17 Cells/drug effects , Th17 Cells/metabolism , Acetamides/administration & dosage , Acetamides/chemistry , Acetamides/pharmacokinetics , Administration, Oral , Animals , Binding Sites , Biological Availability , Cells, Cultured , Crystallography, X-Ray , Humans , Interleukin-17/metabolism , Models, Molecular , Molecular Structure , Nuclear Receptor Subfamily 1, Group F, Member 3/chemistry , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Protein Binding , Rodentia , Structure-Activity Relationship , Th17 Cells/immunology , Tissue Distribution
6.
J Med Chem ; 61(8): 3491-3502, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29617572

ABSTRACT

BACE1 is responsible for the first step in APP proteolysis, leading to toxic Aß production, and has been indicated to play a key role in the pathogenesis of Alzheimer's disease. The related isoform BACE2 is thought to be involved in processing of the pigment cell-specific melanocyte protein. To avoid potential effects on pigmentation, we investigated the feasibility for developing isoform-selective BACE1 inhibitors. Cocrystal structures of 47 compounds were analyzed and clustered according to their selectivity profiles. Selective BACE1 inhibitors were found to exhibit two distinct conformational features proximal to the flap and the S3 subpocket. Several new molecules were designed and tested to make use of this observation. The combination of a pyrimidinyl C-ring and a methylcyclohexyl element resulted in lead molecule 28, which exhibited ∼50-fold selectivity. Compared to a nonselective BACE1/2 inhibitor, 28 showed significantly less inhibition of PMEL processing in human melanocytes, indicating good functional selectivity of this inhibitor class.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Protease Inhibitors/pharmacology , Amyloid Precursor Protein Secretases/chemistry , Amyloid beta-Peptides/metabolism , Animals , Aspartic Acid Endopeptidases/chemistry , Brain/metabolism , Catalytic Domain , Dogs , Female , Humans , Madin Darby Canine Kidney Cells , Male , Mice, Inbred C57BL , Molecular Structure , Oxazoles/chemical synthesis , Oxazoles/chemistry , Oxazoles/pharmacokinetics , Oxazoles/pharmacology , Peptide Fragments/metabolism , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacokinetics , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/chemistry , Rats , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Spiro Compounds/pharmacokinetics , Spiro Compounds/pharmacology , Structure-Activity Relationship , gp100 Melanoma Antigen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...