Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 301
1.
Article En | MEDLINE | ID: mdl-38858083

Decades of research have identified the pathological and pathophysiological hallmarks of Parkinson's disease (PD): profound deficit in brain dopamine and other monoamines, pathological α-synuclein aggregation, synaptic and neuronal network dysfunction, aberrant proteostasis, altered energy homeostasis, inflammation, and neuronal cell death. The purpose of this contribution is to present the phenocopy aspect, pathogenic, and etiologic nonhuman primate (NHP) models of PD to readers with limited prior knowledge of PD so that they are ready to start working on PD. How NHPs, the closest species to man on which we can model diseases, contribute to the knowledge progress and how these models represent an invaluable translational step in therapeutic development are highlighted.

2.
Mov Disord ; 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38576081

Basic Science is crucial for the advancement of clinical care for Movement Disorders. Here, we provide brief updates on how basic science is important for understanding disease mechanisms, disease prevention, disease diagnosis, development of novel therapies and to establish the basis for personalized medicine. We conclude the viewpoint by a call to action to further improve interactions between clinician and basic scientists. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

3.
Sci Rep ; 14(1): 9710, 2024 04 27.
Article En | MEDLINE | ID: mdl-38678103

Among the several animal models of α-synucleinopathies, the well-known viral vector-mediated delivery of wild-type or mutated (A53T) α-synuclein requires new tools to increase the lesion in mice and follow up in vivo expression. To this end, we developed a bioluminescent expression reporter of the human A53T-α-synuclein gene using the NanoLuc system into an AAV2/9, embedded or not in a fibroin solution to stabilise its expression in space and time. We first verified the expression of the fused protein in vitro on transfected cells by bioluminescence and Western blotting. Next, two groups of C57Bl6Jr mice were unilaterally injected with the AAV-NanoLuc-human-A53T-α-synuclein above the substantia nigra combined (or not) with fibroin. We first show that the in vivo cerebral bioluminescence signal was more intense in the presence of fibroin. Using immunohistochemistry, we find that the human-A53T-α-synuclein protein is more restricted to the ipsilateral side with an overall greater magnitude of the lesion when fibroin was added. However, we also detected a bioluminescence signal in peripheral organs in both conditions, confirmed by the presence of viral DNA corresponding to the injected AAV in the liver using qPCR.


Dependovirus , Fibroins , Genetic Vectors , Luminescent Measurements , Mice, Inbred C57BL , alpha-Synuclein , Animals , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Dependovirus/genetics , Humans , Mice , Luminescent Measurements/methods , Genetic Vectors/genetics , Fibroins/metabolism , Central Nervous System/metabolism , Male , Luciferases/metabolism , Luciferases/genetics
5.
J Parkinsons Dis ; 14(2): 261-267, 2024.
Article En | MEDLINE | ID: mdl-38339940

Alterations of serotonin type 4 receptor levels are linked to mood disorders and cognitive deficits in several conditions. However, few studies have investigated 5-HT4R alterations in movement disorders. We wondered whether striatal 5-HT4R expression is altered in experimental parkinsonism. We used a brain bank tissue from a rat and a macaque model of Parkinson's disease (PD). We then investigated its in vivo PET imaging regulation in a cohort of macaques. Dopaminergic depletion increases striatal 5-HT4R in the two models, further augmented after dyskinesia-inducing L-Dopa. Pending confirmation in PD patients, the 5-HT4R might offer a therapeutic target for dampening PD's symptoms.


Dyskinesia, Drug-Induced , Parkinson Disease , Parkinsonian Disorders , Humans , Rats , Animals , Parkinson Disease/drug therapy , Receptors, Serotonin, 5-HT4/therapeutic use , Dyskinesia, Drug-Induced/diagnostic imaging , Dyskinesia, Drug-Induced/etiology , Dyskinesia, Drug-Induced/drug therapy , Parkinsonian Disorders/drug therapy , Levodopa/therapeutic use , Disease Models, Animal , Oxidopamine , Antiparkinson Agents/therapeutic use
6.
CNS Neurol Disord Drug Targets ; 23(4): 476-487, 2024.
Article En | MEDLINE | ID: mdl-36999711

Currently, available therapeutics for the treatment of Parkinson's disease (PD) fail to provide sustained and predictable relief from motor symptoms without significant risk of adverse events (AEs). While dopaminergic agents, particularly levodopa, may initially provide strong motor control, this efficacy can vary with disease progression. Patients may suffer from motor fluctuations, including sudden and unpredictable drop-offs in efficacy. Dopamine agonists (DAs) are often prescribed during early-stage PD with the expectation they will delay the development of levodopa-associated complications, but currently available DAs are less effective than levodopa for the treatment of motor symptoms. Furthermore, both levodopa and DAs are associated with a significant risk of AEs, many of which can be linked to strong, repeated stimulation of D2/D3 dopamine receptors. Targeting D1/D5 dopamine receptors has been hypothesized to produce strong motor benefits with a reduced risk of D2/D3-related AEs, but the development of D1-selective agonists has been previously hindered by intolerable cardiovascular AEs and poor pharmacokinetic properties. There is therefore an unmet need in PD treatment for therapeutics that provide sustained and predictable efficacy, with strong relief from motor symptoms and reduced risk of AEs. Partial agonism at D1/D5 has shown promise for providing relief from motor symptoms, potentially without the AEs associated with D2/D3-selective DAs and full D1/D5-selective DAs. Tavapadon is a novel oral partial agonist that is highly selective at D1/D5 receptors and could meet these criteria. This review summarizes currently available evidence of tavapadon's therapeutic potential for the treatment of early through advanced PD.


Dopamine Agonists , Parkinson Disease , Humans , Dopamine Agonists/therapeutic use , Parkinson Disease/drug therapy , Levodopa/therapeutic use , Dopamine Agents/therapeutic use , Receptors, Dopamine D2 , Receptors, Dopamine D1 , Antiparkinson Agents/therapeutic use
7.
Alzheimers Dement ; 20(3): 1894-1912, 2024 Mar.
Article En | MEDLINE | ID: mdl-38148705

INTRODUCTION: The "prion-like" features of Alzheimer's disease (AD) tauopathy and its relationship with amyloid-ß (Aß) have never been experimentally studied in primates phylogenetically close to humans. METHODS: We injected 17 macaques in the entorhinal cortex with nanograms of seeding-competent tau aggregates purified from AD brains or control extracts from aged-matched healthy brains, with or without intracerebroventricular co-injections of oligomeric-Aß. RESULTS: Pathological tau injection increased cerebrospinal fluid (CSF) p-tau181 concentration after 18 months. Tau pathology spreads from the entorhinal cortex to the hippocampal trisynaptic loop and the cingulate cortex, resuming the experimental progression of Braak stage I to IV. Many AD-related molecular networks were impacted by tau seeds injections regardless of Aß injections in proteomic analyses. However, we found mature neurofibrillary tangles, increased CSF total-tau concentration, and pre- and postsynaptic degeneration only in Aß co-injected macaques. DISCUSSION: Oligomeric-Aß mediates the maturation of tau pathology and its neuronal toxicity in macaques but not its initial spreading. HIGHLIGHTS: This study supports the "prion-like" properties of misfolded tau extracted from AD brains. This study empirically validates the Braak staging in an anthropomorphic brain. This study highlights the role of oligomeric Aß in driving the maturation and toxicity of tau pathology. This work establishes a novel animal model of early sporadic AD that is closer to the human pathology.


Alzheimer Disease , Prions , Animals , Humans , Aged , Alzheimer Disease/pathology , Macaca/metabolism , Proteomics , tau Proteins/metabolism , Amyloid beta-Peptides/metabolism , Brain/pathology
8.
NPJ Parkinsons Dis ; 9(1): 135, 2023 Sep 19.
Article En | MEDLINE | ID: mdl-37726343

Aggregation of α-synuclein (α-syn) is the cornerstone of neurodegenerative diseases termed synucleinopathies, which include Parkinson's Disease (PD), Dementia with Lewy Bodies (DLB), and Multiple System Atrophy (MSA). These synucleinopathies are characterized by the deposit of aggregated α-syn in intracellular inclusions observable in neurons and glial cells. In PD and DLB, these aggregates, predominantly located in neurons, are called Lewy Bodies (LBs). These LBs are one of the pathological hallmarks of PD and DLB, alongside dopaminergic neuron loss in the substantia nigra. Previous studies have demonstrated the ability of PD patient-derived LB fractions to induce nigrostriatal neurodegeneration and α-syn pathology when injected into the striatum or the enteric nervous system of non-human primates. Here, we report the pathological consequences of injecting these LB fractions into the cortex of non-human primates. To this end, we inoculated mesencephalic PD patient-derived LB fractions into the prefrontal cortex of baboon monkeys terminated one year later. Extensive analyses were performed to evaluate pathological markers known to be affected in LB pathologies. We first assessed the hypothesized presence of phosphorylated α-syn at S129 (pSyn) in the prefrontal cortices. Second, we quantified the neuronal, microglial, and astrocytic cell survival in the same cortices. Third, we characterized these cortical LB injections' putative impact on the integrity of the nigrostriatal system. Overall, we observed pSyn accumulation around the injection site in the dorsal prefrontal cortex, in connected cortical regions, and further towards the striatum, suggesting α-syn pathological propagation. The pathology was also accompanied by neuronal loss in these prefrontal cortical regions and the caudate nucleus, without, however, loss of nigral dopamine neurons. In conclusion, this pilot study provides novel data demonstrating the toxicity of patient-derived extracts, their potential to propagate from the cortex to the striatum in non-human primates, and a possible primate model of DLB.

9.
Neurobiol Dis ; 184: 106226, 2023 08.
Article En | MEDLINE | ID: mdl-37451474

Loss of dopaminergic midbrain neurons perturbs l-serine and d-serine homeostasis in the post-mortem caudate putamen (CPu) of Parkinson's disease (PD) patients. However, it is unclear whether the severity of dopaminergic nigrostriatal degeneration plays a role in deregulating serine enantiomers' metabolism. Here, through high-performance liquid chromatography (HPLC), we measured the levels of these amino acids in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys and MPTP-plus-probenecid (MPTPp)-treated mice to determine whether and how dopaminergic midbrain degeneration affects the levels of serine enantiomers in various basal ganglia subregions. In addition, in the same brain regions, we measured the levels of key neuroactive amino acids modulating glutamatergic neurotransmission, including l-glutamate, glycine, l-aspartate, d-aspartate, and their precursors l-glutamine, l-asparagine. In monkeys, MPTP treatment produced severe denervation of nigrostriatal dopaminergic fibers (⁓75%) and increased the levels of serine enantiomers in the rostral putamen (rPut), but not in the subthalamic nucleus, and the lateral and medial portion of the globus pallidus. Moreover, this neurotoxin significantly reduced the protein expression of the astrocytic serine transporter ASCT1 and the glycolytic enzyme GAPDH in the rPut of monkeys. Conversely, concentrations of d-serine and l-serine, as well as ASCT1 and GAPDH expression were unaffected in the striatum of MPTPp-treated mice, which showed only mild dopaminergic degeneration (⁓30%). These findings unveil a link between the severity of dopaminergic nigrostriatal degeneration and striatal serine enantiomers concentration, ASCT1 and GAPDH expression. We hypothesize that the up-regulation of d-serine and l-serine levels occurs as a secondary response within a homeostatic loop to support the metabolic and neurotransmission demands imposed by the degeneration of dopaminergic neurons.


1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Serine , Mice , Animals , Serine/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Dopamine/metabolism , Corpus Striatum/metabolism , Mesencephalon/metabolism , Amino Acids/metabolism , Putamen/metabolism , Homeostasis
10.
NPJ Parkinsons Dis ; 9(1): 118, 2023 Jul 26.
Article En | MEDLINE | ID: mdl-37495571

Metabolism of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) to the neurotoxin MPP+ in the brain causes permanent Parkinson's disease-like symptoms by destroying dopaminergic neurons in the pars compacta of the substantia nigra in humans and non-human primates. However, the complete molecular pathology underlying MPTP-induced parkinsonism remains poorly understood. We used dual polarity matrix-assisted laser desorption/ionization mass spectrometry imaging to thoroughly image numerous glycerophospholipids and sphingolipids in coronal brain tissue sections of MPTP-lesioned and control non-human primate brains (Macaca mulatta). The results revealed specific distributions of several sulfatide lipid molecules based on chain-length, number of double bonds, and importantly, hydroxylation stage. More specifically, certain long-chain hydroxylated sulfatides with polyunsaturated chains in the molecular structure were depleted within motor-related brain regions in the MPTP-lesioned animals, e.g., external and internal segments of globus pallidus and substantia nigra pars reticulata. In contrast, certain long-chain non-hydroxylated sulfatides were found to be elevated within the same brain regions. These findings demonstrate region-specific dysregulation of sulfatide metabolism within the MPTP-lesioned macaque brain. The depletion of long-chain hydroxylated sulfatides in the MPTP-induced pathology indicates oxidative stress and oligodendrocyte/myelin damage within the pathologically relevant brain regions. Hence, the presented findings improve our current understanding of the molecular pathology of MPTP-induced parkinsonism within primate brains, and provide a basis for further research regarding the role of dysregulated sulfatide metabolism in PD.

11.
J Am Soc Mass Spectrom ; 34(5): 836-846, 2023 May 03.
Article En | MEDLINE | ID: mdl-37052344

The visualization of small metabolites by MALDI mass spectrometry imaging in brain tissue sections is challenging due to low detection sensitivity and high background interference. We present an on-tissue chemical derivatization MALDI mass spectrometry imaging approach for the comprehensive mapping of carboxyls and aldehydes in brain tissue sections. In this approach, the AMPP (1-(4-(aminomethyl)phenyl)pyridin-1-ium chloride) derivatization reagent is used for the covalent charge-tagging of molecules containing carboxylic acid (in the presence of peptide coupling reagents) and aldehydes. This includes free fatty acids and the associated metabolites, fatty aldehydes, dipeptides, neurotoxic reactive aldehydes, amino acids, neurotransmitters and associated metabolites, as well as tricarboxylic acid cycle metabolites. We performed sensitive ultrahigh mass resolution MALDI-MS detection and imaging of various carboxyl- and aldehyde-containing endogenous metabolites simultaneously in rodent brain tissue sections. We verified the AMPP-derivatized metabolites by tandem MS for structural elucidation. This approach allowed us to image numerous aldehydes and carboxyls, including certain metabolites which had been undetectable in brain tissue sections. We also demonstrated the application of on-tissue derivatization to carboxyls and aldehydes in coronal brain tissue sections of a nonhuman primate Parkinson's disease model. Our methodology provides a powerful tool for the sensitive, simultaneous spatial molecular imaging of numerous aldehydes and carboxylic acids during pathological states, including neurodegeneration, in brain tissue.


Aldehydes , Brain , Animals , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Brain/diagnostic imaging , Amino Acids/analysis , Carboxylic Acids/analysis
12.
Mov Disord ; 38(7): 1336-1340, 2023 07.
Article En | MEDLINE | ID: mdl-37093618

BACKGROUND: Multiple system atrophy (MSA) is a sporadic adult-onset rare neurodegenerative synucleinopathy for which counteracting central nervous system insulin resistance bears the potential of being neuroprotective. G-protein-(heterotrimeric guanine nucleotide-binding protein)-coupled receptor kinase 2 (GRK2) is emerging as a physiologically relevant inhibitor of insulin signaling. OBJECTIVES: We tested whether lowering brain GRK2 abundance may reverse insulin-resistance. METHODS: We lowered brain GRK2 abundance through viral-mediated delivery of a GRK2-specific miRNA and quantified the reversion of a developing or an established insulin-resistant phenotype using the transgenic PLP-SYN mouse model of MSA. RESULTS: Viral vector delivery of a GRK2 miRNA demonstrated a neuroprotective capacity when administered (1) in utero intracerebroventricularly in developing PLP-SYN mice and (2) intrastriatally in adult PLP-SYN mice. Decreased striatal GRK2 levels correlated in both designs with neuroprotection of the substantia nigra dopamine neurons, reduction in high-molecular-weight species of α-synuclein, and reduced insulin resistance. CONCLUSIONS: These data support GRK2 as a potential therapeutic target in MSA. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Insulin Resistance , Insulins , MicroRNAs , Movement Disorders , Multiple System Atrophy , Mice , Animals , Multiple System Atrophy/therapy , Multiple System Atrophy/drug therapy , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Mice, Transgenic , Insulins/therapeutic use , Disease Models, Animal
13.
Neurobiol Dis ; 180: 106086, 2023 05.
Article En | MEDLINE | ID: mdl-36933673

The role of alpha-synuclein in Parkinson's disease has been heavily investigated since its discovery as a component of Lewy bodies. Recent rodent data demonstrate that alpha-synuclein strain structure is critical for differential propagation and toxicity. Based on these findings, we have compared, for the first time, in this pilot study, the capacity of two alpha-synuclein strains and patient-derived Lewy body extracts to model synucleinopathies after intra-putaminal injection in the non-human primate brain. Functional alterations triggered by these injections were evaluated in vivo using glucose positron emission tomography imaging. Post-mortem immunohistochemical and biochemical analyses were used to detect neuropathological alterations in the dopaminergic system and alpha-synuclein pathology propagation. In vivo results revealed a decrease in glucose metabolism more pronounced in alpha-synuclein strain-injected animals. Histology showed a decreased number of dopaminergic tyrosine hydroxylase-positive cells in the substantia nigra to different extents according to the inoculum used. Biochemistry revealed that alpha-synuclein-induced aggregation, phosphorylation, and propagation in different brain regions are strain-specific. Our findings show that distinct alpha-synuclein strains can induce specific patterns of synucleinopathy in the non-human primate, changes in the nigrostriatal pathway, and functional alterations that resemble early-stage Parkinson's disease.


Parkinson Disease , Synucleinopathies , Animals , alpha-Synuclein/metabolism , Parkinson Disease/metabolism , Pilot Projects , Lewy Bodies/metabolism , Synucleinopathies/pathology , Substantia Nigra/metabolism , Dopamine/metabolism , Primates/metabolism
14.
Neurobiol Dis ; 176: 105966, 2023 01.
Article En | MEDLINE | ID: mdl-36527982

Synucleinopathies, including Parkinson's disease (PD), dementia with Lewy Bodies (DLB), and multiple system atrophy (MSA), are characterized by the misfolding and subsequent aggregation of alpha-synuclein (α-syn) that accumulates in cytoplasmic inclusions bodies in the cells of affected brain regions. Since the seminal report of likely-aggregated α-syn presence within the Lewy bodies by Spillantini et al. in 1997, the keyword "synuclein aggregation" has appeared in over 6000 papers (Source: PubMed October 2022). Studying, observing, describing, and quantifying α-syn aggregation is therefore of paramount importance, whether it happens in tubo, in vitro, in post-mortem samples, or in vivo. The past few years have witnessed tremendous progress in understanding aggregation mechanisms and identifying various polymorphs. In this context of growing complexity, it is of utmost importance to understand what tools we possess, what exact information they provide, and in what context they may be applied. Nonetheless, it is also crucial to rationalize the relevance of the information and the limitations of these methods for gauging the final result. In this review, we present the main techniques that have shaped the current views about α-syn structure and dynamics, with particular emphasis on the recent breakthroughs that may change our understanding of synucleinopathies.


Multiple System Atrophy , Parkinson Disease , Synucleinopathies , Humans , alpha-Synuclein/chemistry , Lewy Bodies
15.
Brain ; 146(6): 2524-2534, 2023 06 01.
Article En | MEDLINE | ID: mdl-36382344

Progressive supranuclear palsy is a primary tauopathy affecting both neurons and glia and is responsible for both motor and cognitive symptoms. Recently, it has been suggested that progressive supranuclear palsy tauopathy may spread in the brain from cell to cell in a 'prion-like' manner. However, direct experimental evidence of this phenomenon, and its consequences on brain functions, is still lacking in primates. In this study, we first derived sarkosyl-insoluble tau fractions from post-mortem brains of patients with progressive supranuclear palsy. We also isolated the same fraction from age-matched control brains. Compared to control extracts, the in vitro characterization of progressive supranuclear palsy-tau fractions demonstrated a high seeding activity in P301S-tau expressing cells, displaying after incubation abnormally phosphorylated (AT8- and AT100-positivity), misfolded, filamentous (pentameric formyl thiophene acetic acid positive) and sarkosyl-insoluble tau. We bilaterally injected two male rhesus macaques in the supranigral area with this fraction of progressive supranuclear palsy-tau proteopathic seeds, and two other macaques with the control fraction. The quantitative analysis of kinematic features revealed that progressive supranuclear palsy-tau injected macaques exhibited symptoms suggestive of parkinsonism as early as 6 months after injection, remaining present until euthanasia at 18 months. An object retrieval task showed the progressive appearance of a significant dysexecutive syndrome in progressive supranuclear palsy-tau injected macaques compared to controls. We found AT8-positive staining and 4R-tau inclusions only in progressive supranuclear palsy-tau injected macaques. Characteristic pathological hallmarks of progressive supranuclear palsy, including globose and neurofibrillary tangles, tufted astrocytes and coiled bodies, were found close to the injection sites but also in connected brain regions that are known to be affected in progressive supranuclear palsy (striatum, pallidum, thalamus). Interestingly, while glial AT8-positive lesions were the most frequent near the injection site, we found mainly neuronal inclusions in the remote brain area, consistent with a neuronal transsynaptic spreading of the disease. Our results demonstrate that progressive supranuclear palsy patient-derived tau aggregates can induce motor and behavioural impairments in non-human primates related to the prion-like seeding and spreading of typical pathological progressive supranuclear palsy lesions. This pilot study paves the way for supporting progressive supranuclear palsy-tau injected macaque as a relevant animal model to accelerate drug development targeting this rare and fatal neurodegenerative disease.


Neurodegenerative Diseases , Supranuclear Palsy, Progressive , Tauopathies , Animals , Male , Supranuclear Palsy, Progressive/pathology , tau Proteins/metabolism , Neurodegenerative Diseases/pathology , Macaca mulatta/metabolism , Pilot Projects , Tauopathies/pathology , Brain/pathology
16.
Vaccines (Basel) ; 10(9)2022 Aug 30.
Article En | MEDLINE | ID: mdl-36146508

The progressive accumulation of misfolded α-synuclein (α-syn) in the brain is widely considered to be causal for the debilitating clinical manifestations of synucleinopathies including, most notably, Parkinson's disease (PD). Immunotherapies, both active and passive, against α-syn have been developed and are promising novel treatment strategies for such disorders. To increase the potency and specificity of PD vaccination, we created the 'Win the Skin Immune System Trick' (WISIT) vaccine platform designed to target skin-resident dendritic cells, inducing superior B and T cell responses. Of the six tested WISIT candidates, all elicited higher immune responses compared to conventional, aluminum adjuvanted peptide-carrier conjugate PD vaccines, in BALB/c mice. WISIT-induced antibodies displayed higher selectivity for α-syn aggregates than those induced by conventional vaccines. Additionally, antibodies induced by two selected candidates were shown to inhibit α-syn aggregation in a dose-dependent manner in vitro. To determine if α-syn fibril formation could also be inhibited in vivo, WISIT candidate type 1 (CW-type 1) was tested in an established synucleinopathy seeding model and demonstrated reduced propagation of synucleinopathy in vivo. Our studies provide proof-of-concept for the efficacy of the WISIT vaccine technology platform and support further preclinical and clinical development of this vaccine candidate.

17.
Mol Neurobiol ; 59(10): 6245-6259, 2022 Oct.
Article En | MEDLINE | ID: mdl-35915387

Parkinson's disease (PD) is pathologically characterized by intracellular α-synuclein-rich protein aggregates, named Lewy bodies (LB), and by the progressive loss of dopaminergic neurons in the substantia nigra. Several heavy metals, including zinc (Zn), have been suggested to play a role in PD progression, although the exact role of Zn in neurodegeneration remains to be fully elucidated. To address this gap, we investigated the effects of Zn modulation on the progression of degeneration in mice injected with PD patient-derived LB-extracts carrying toxic α-synuclein aggregates. Zn modulation was achieved using either a clioquinol-enriched diet, a Zn ionophore that redistributes cellular Zn, or a Zn-enriched diet that increases Zn levels. Clioquinol treatment significantly prevented dopaminergic neurodegeneration and reduced α-synuclein-associated pathology in LB-injected mice, while no differences were observed with Zn supplementation. Biochemical analyses further demonstrate that the expression levels of vesicle-specific Zn transporter ZnT3 in the striatum of LB-injected mice treated with clioquinol were decreased, suggesting an intracellular redistribution of Zn. Additionally, we found that clioquinol modulates the autophagy-lysosomal pathway by enhancing lysosomal redistribution within the neuronal compartments. Collectively, we found that in vivo pharmacological chelation of Zn, by dampening Zn-mediated cytotoxicity, can result in an overall attenuation of PD-linked lysosomal alterations and dopaminergic neurodegeneration. The results support zinc chelation as a disease-modifying strategy for treating PD.


Clioquinol , Parkinson Disease , Animals , Brain/metabolism , Clioquinol/pharmacology , Clioquinol/therapeutic use , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Humans , Ionophores/pharmacology , Ionophores/therapeutic use , Mice , Parkinson Disease/pathology , Substantia Nigra/pathology , Tissue Extracts , Zinc/metabolism , alpha-Synuclein/metabolism
18.
NPJ Parkinsons Dis ; 8(1): 41, 2022 Apr 13.
Article En | MEDLINE | ID: mdl-35418178

L-DOPA administration is the primary treatment for Parkinson's disease (PD) but long-term administration is usually accompanied by hyperkinetic side-effects called L-DOPA-induced dyskinesia (LID). Signaling neuropeptides of the basal ganglia are affected in LID and changes in the expression of neuropeptide precursors have been described, but the final products formed from these precursors have not been well defined and regionally mapped. We therefore used mass spectrometry imaging to visualize and quantify neuropeptides in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposed parkinsonian and LID Macaca mulatta brain samples. We found that dyskinesia severity correlated with the levels of some abnormally processed peptides - notably, des-tyrosine dynorphins, substance P (1-7), and substance P (1-9) - in multiple brain regions. Levels of the active neuropeptides; dynorphin B, dynorphin A (1-8), α-neoendorphin, substance P (1-11), and neurokinin A, in the globus pallidus and substantia nigra correlated with putaminal levels of L-DOPA. Our results demonstrate that the abundance of selected active neuropeptides is associated with L-DOPA concentrations in the putamen, emphasizing their sensitivity to L-DOPA. Additionally, levels of truncated neuropeptides (which generally exhibit reduced or altered receptor affinity) correlate with dyskinesia severity, particularly for peptides associated with the direct pathway (i.e., dynorphins and tachykinins). The increases in tone of the tachykinin, enkephalin, and dynorphin neuropeptides in LID result in abnormal processing of neuropeptides with different biological activity and may constitute a functional compensatory mechanism for balancing the increased L-DOPA levels across the whole basal ganglia.

19.
Brain ; 145(6): 2092-2107, 2022 06 30.
Article En | MEDLINE | ID: mdl-35245368

Synaptic impairment might precede neuronal degeneration in Parkinson's disease. However, the intimate mechanisms altering synaptic function by the accumulation of presynaptic α-synuclein in striatal dopaminergic terminals before dopaminergic death occurs, have not been elucidated. Our aim is to unravel the sequence of synaptic functional and structural changes preceding symptomatic dopaminergic cell death. As such, we evaluated the temporal sequence of functional and structural changes at striatal synapses before parkinsonian motor features appear in a rat model of progressive dopaminergic death induced by overexpression of the human mutated A53T α-synuclein in the substantia nigra pars compacta, a protein transported to these synapses. Sequential window acquisition of all theoretical mass spectra proteomics identified deregulated proteins involved first in energy metabolism and later, in vesicle cycling and autophagy. After protein deregulation and when α-synuclein accumulated at striatal synapses, alterations to mitochondrial bioenergetics were observed using a Seahorse XF96 analyser. Sustained dysfunctional mitochondrial bioenergetics was followed by a decrease in the number of dopaminergic terminals, morphological and ultrastructural alterations, and an abnormal accumulation of autophagic/endocytic vesicles inside the remaining dopaminergic fibres was evident by electron microscopy. The total mitochondrial population remained unchanged whereas the number of ultrastructurally damaged mitochondria increases as the pathological process evolved. We also observed ultrastructural signs of plasticity within glutamatergic synapses before the expression of motor abnormalities, such as a reduction in axospinous synapses and an increase in perforated postsynaptic densities. Overall, we found that a synaptic energetic failure and accumulation of dysfunctional organelles occur sequentially at the dopaminergic terminals as the earliest events preceding structural changes and cell death. We also identify key proteins involved in these earliest functional abnormalities that may be modulated and serve as therapeutic targets to counterbalance the degeneration of dopaminergic cells to delay or prevent the development of Parkinson's disease.


Parkinson Disease , Parkinsonian Disorders , Animals , Autophagy , Corpus Striatum/metabolism , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Energy Metabolism , Parkinsonian Disorders/metabolism , Rats , alpha-Synuclein/metabolism
20.
Brain ; 145(3): 1001-1017, 2022 04 29.
Article En | MEDLINE | ID: mdl-35285474

Synucleinopathies encompass several neurodegenerative diseases, which include Parkinson's disease, dementia with Lewy bodies and multiple system atrophy. These diseases are characterized by the deposit of α-synuclein aggregates in intracellular inclusions in neurons and glial cells. Unlike Parkinson's disease and dementia with Lewy bodies, where aggregates are predominantly neuronal, multiple system atrophy is associated with α-synuclein cytoplasmic inclusions in oligodendrocytes. Glial cytoplasmic inclusions are the pathological hallmark of multiple system atrophy and are associated with neuroinflammation, modest demyelination and, ultimately, neurodegeneration. To evaluate the possible pathogenic role of glial cytoplasmic inclusions, we inoculated glial cytoplasmic inclusion-containing brain fractions obtained from multiple system atrophy patients into the striatum of non-human primates. After a 2-year in vivo phase, extensive histochemical and biochemical analyses were performed on the whole brain. We found loss of both nigral dopamine neurons and striatal medium spiny neurons, as well as loss of oligodendrocytes in the same regions, which are characteristics of multiple system atrophy. Furthermore, demyelination, neuroinflammation and α-synuclein pathology were also observed. These results show that the α-synuclein species in multiple system atrophy-derived glial cytoplasmic inclusions can induce a pathological process in non-human primates, including nigrostriatal and striatofugal neurodegeneration, oligodendroglial cell loss, synucleinopathy and gliosis. The present data pave the way for using this experimental model for MSA research and therapeutic development.


Demyelinating Diseases , Lewy Body Disease , Multiple System Atrophy , Parkinson Disease , Synucleinopathies , Animals , Brain/pathology , Demyelinating Diseases/pathology , Humans , Inclusion Bodies/metabolism , Lewy Body Disease/pathology , Multiple System Atrophy/pathology , Parkinson Disease/pathology , alpha-Synuclein/metabolism
...