Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Med Phys ; 50(12): 7822-7839, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37310802

ABSTRACT

BACKGROUND: Invasive coronary angiography (ICA) is a primary imaging modality that visualizes the lumen area of coronary arteries for diagnosis and interventional guidance. In the current practice of quantitative coronary analysis (QCA), semi-automatic segmentation tools require labor-intensive and time-consuming manual correction, limiting their application in the catheterization room. PURPOSE: This study aims to propose rank-based selective ensemble methods that improve the segmentation performance and reduce morphological errors that limit fully automated quantification of coronary artery using deep-learning segmentation of ICA. METHODS: Two selective ensemble methods proposed in this work integrated the weighted ensemble approach with per-image quality estimation. The segmentation outcomes from five base models with different loss functions were ranked either by mask morphology or estimated dice similarity coefficient (DSC). The final output was determined by imposing different weights according to the ranks. The ranking criteria based on mask morphology were formulated from empirical insight to avoid frequent types of segmentation errors (MSEN), while the estimation of DSCs was performed by comparing the pseudo-ground truth generated from a meta-learner (ESEN). Five-fold cross-validation was performed with the internal dataset of 7426 coronary angiograms from 2924 patients, and prediction model was externally validated with 556 images of 226 patients. RESULTS: The selective ensemble methods improved the segmentation performance with DSCs up to 93.07% and provided a better delineation of coronary lesion with local DSCs of up to 93.93%, outperforming all individual models. Proposed methods also minimized the chances of mask disconnection in the most narrowed regions to 2.10%. The robustness of the proposed methods was also evident in the external validation. Inference time for major vessel segmentation was approximately one-sixth of a second. CONCLUSION: Proposed methods successfully reduced morphological errors in the predicted masks and were able to enhance the robustness of the automatic segmentation. The results suggest better applicability of real-time QCA-based diagnostic methods in routine clinical settings.


Subject(s)
Deep Learning , Humans , Coronary Angiography/methods , Heart , Coronary Vessels/diagnostic imaging , Image Processing, Computer-Assisted/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...