Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Biomolecules ; 13(12)2023 12 08.
Article En | MEDLINE | ID: mdl-38136634

The activity of ß-ureidopropionase, which catalyses the last step in the degradation of uracil, thymine, and analogous antimetabolites, is cooperatively regulated by the substrate and product of the reaction. This involves shifts in the equilibrium of the oligomeric states of the enzyme, but how these are achieved and result in changes in enzyme catalytic competence has yet to be determined. Here, the regulation of human ß-ureidopropionase was further explored via site-directed mutagenesis, inhibition studies, and cryo-electron microscopy. The active-site residue E207, as well as H173 and H307 located at the dimer-dimer interface, are shown to play crucial roles in enzyme activation. Dimer association to larger assemblies requires closure of active-site loops, which positions the catalytically crucial E207 stably in the active site. H173 and H307 likely respond to ligand-induced changes in their environment with changes in their protonation states, which fine-tunes the active-site loop stability and the strength of dimer-dimer interfaces and explains the previously observed pH influence on the oligomer equilibrium. The correlation between substrate analogue structure and effect on enzyme assembly suggests that the ability to favourably interact with F205 may distinguish activators from inhibitors. The cryo-EM structure of human ß-ureidopropionase assembly obtained at low pH provides first insights into the architecture of its activated state. and validates our current model of the allosteric regulation mechanism. Closed entrance loop conformations and dimer-dimer interfaces are highly conserved between human and fruit fly enzymes.


Catalytic Domain , Humans , Allosteric Regulation , Cryoelectron Microscopy , Mutagenesis, Site-Directed
2.
Biomolecules ; 13(9)2023 Sep 07.
Article En | MEDLINE | ID: mdl-37759761

Tyrosinases belong to the type-III copper enzyme family, which is involved in melanin production in a wide range of organisms. Despite similar overall characteristics and functions, their structures, activities, substrate specificities and regulation vary. The tyrosinase from the bacterium Verrucomicrobium spinosum (vsTyr) is produced as a pre-pro-enzyme in which a C-terminal extension serves as an inactivation domain. It does not require a caddie protein for copper ion incorporation, which makes it similar to eukaryotic tyrosinases. To gain an understanding of the catalytic machinery and regulation of vsTyr activity, we determined the structure of the catalytically active "core domain" of vsTyr by X-ray crystallography. The analysis showed that vsTyr is an atypical bacterial tyrosinase not only because it is independent of a caddie protein but also because it shows the highest structural (and sequence) similarity to plant-derived members of the type-III copper enzyme family and is more closely related to fungal tyrosinases regarding active site features. By modelling the structure of the pre-pro-enzyme using AlphaFold, we observed that Phe453, located in the C-terminal extension, is appropriately positioned to function as a "gatekeeper" residue. Our findings raise questions concerning the evolutionary origin of vsTyr.

3.
Mol Syst Biol ; 19(7): e11164, 2023 07 11.
Article En | MEDLINE | ID: mdl-37219487

Phosphorylation is a ubiquitous post-translation modification that regulates protein function by promoting, inhibiting or modulating protein-protein interactions. Hundreds of thousands of phosphosites have been identified but the vast majority have not been functionally characterised and it remains a challenge to decipher phosphorylation events modulating interactions. We generated a phosphomimetic proteomic peptide-phage display library to screen for phosphosites that modulate short linear motif-based interactions. The peptidome covers ~13,500 phospho-serine/threonine sites found in the intrinsically disordered regions of the human proteome. Each phosphosite is represented as wild-type and phosphomimetic variant. We screened 71 protein domains to identify 248 phosphosites that modulate motif-mediated interactions. Affinity measurements confirmed the phospho-modulation of 14 out of 18 tested interactions. We performed a detailed follow-up on a phospho-dependent interaction between clathrin and the mitotic spindle protein hepatoma-upregulated protein (HURP), demonstrating the essentiality of the phospho-dependency to the mitotic function of HURP. Structural characterisation of the clathrin-HURP complex elucidated the molecular basis for the phospho-dependency. Our work showcases the power of phosphomimetic ProP-PD to discover novel phospho-modulated interactions required for cellular function.


Peptide Library , Proteomics , Humans , Phosphorylation , Clathrin
4.
Nat Commun ; 14(1): 2409, 2023 04 26.
Article En | MEDLINE | ID: mdl-37100772

Viruses mimic host short linear motifs (SLiMs) to hijack and deregulate cellular functions. Studies of motif-mediated interactions therefore provide insight into virus-host dependencies, and reveal targets for therapeutic intervention. Here, we describe the pan-viral discovery of 1712 SLiM-based virus-host interactions using a phage peptidome tiling the intrinsically disordered protein regions of 229 RNA viruses. We find mimicry of host SLiMs to be a ubiquitous viral strategy, reveal novel host proteins hijacked by viruses, and identify cellular pathways frequently deregulated by viral motif mimicry. Using structural and biophysical analyses, we show that viral mimicry-based interactions have similar binding strength and bound conformations as endogenous interactions. Finally, we establish polyadenylate-binding protein 1 as a potential target for broad-spectrum antiviral agent development. Our platform enables rapid discovery of mechanisms of viral interference and the identification of potential therapeutic targets which can aid in combating future epidemics and pandemics.


Bacteriophages , Intrinsically Disordered Proteins , Viruses , Bacteriophages/genetics , Viruses/genetics , Intrinsically Disordered Proteins/metabolism , Amino Acid Motifs , Host-Pathogen Interactions/genetics
5.
PLoS Pathog ; 16(11): e1009016, 2020 11.
Article En | MEDLINE | ID: mdl-33216805

The opportunistic pathogen Streptococcus pneumoniae has dual lifestyles: one of an asymptomatic colonizer in the human nasopharynx and the other of a deadly pathogen invading sterile host compartments. The latter triggers an overwhelming inflammatory response, partly driven via pore forming activity of the cholesterol dependent cytolysin (CDC), pneumolysin. Although pneumolysin-induced inflammation drives person-to-person transmission from nasopharynx, the primary reservoir for pneumococcus, it also contributes to high mortality rates, creating a bottleneck that hampers widespread bacterial dissemination, thus acting as a double-edged sword. Serotype 1 ST306, a widespread pneumococcal clone, harbours a non-hemolytic variant of pneumolysin (Ply-NH). Performing crystal structure analysis of Ply-NH, we identified Y150H and T172I as key substitutions responsible for loss of its pore forming activity. We uncovered a novel inter-molecular cation-π interaction, governing formation of the transmembrane ß-hairpins (TMH) in the pore state of Ply, which can be extended to other CDCs. H150 in Ply-NH disrupts this interaction, while I172 provides structural rigidity to domain-3, through hydrophobic interactions, inhibiting TMH formation. Loss of pore forming activity enabled improved cellular invasion and autophagy evasion, promoting an atypical intracellular lifestyle for pneumococcus, a finding that was corroborated in in vivo infection models. Attenuation of inflammatory responses and tissue damage promoted tolerance of Ply-NH-expressing pneumococcus in the lower respiratory tract. Adoption of this altered lifestyle may be necessary for ST306 due to its limited nasopharyngeal carriage, with Ply-NH, aided partly by loss of its pore forming ability, facilitating a benign association of SPN in an alternative, intracellular host niche.


Adaptation, Physiological , Inflammation/microbiology , Loss of Function Mutation , Pneumococcal Infections/microbiology , Streptococcus pneumoniae/physiology , Streptolysins/metabolism , Amino Acid Sequence , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Membrane/microbiology , Cholesterol/metabolism , Cytoplasm/microbiology , Female , Humans , Mice , Models, Structural , Perforin/genetics , Perforin/metabolism , Sequence Alignment , Streptococcus pneumoniae/genetics , Streptolysins/genetics
6.
J Biomol Struct Dyn ; 32(12): 2017-32, 2014 Dec.
Article En | MEDLINE | ID: mdl-24125081

MERIT40 (MEdiator of RAP80 Interaction and Targeting 40) is a novel associate of the BRCA1-complex and plays an essential role in DNA damage repair. It is the least characterized protein of BRCA1-complex and mainly responsible for maintaining the complex integrity. However, its structural and functional aspects of regulating the complex stability still remain elusive. Here, we carried out a comprehensive examination of MERIT40 biophysical properties and identified its novel interacting partner which would help to understand its role in BRCA1-complex. The recombinant protein was purified by affinity chromatography and unfolding pathway was determined using spectroscopic and calorimetric methods. Molecular model was generated using combinatorial approaches of modeling, and monomer-monomer docking was carried out to identify dimeric interface. Disordered region of MERIT40 was hatchet using trypsin and chymotrypsin to illustrate the existence of stable domain whose function was speculated through DALI search. Our findings suggest that MERIT40 forms a dimer in a concentration-independent manner. Its central region shows remarkable stability towards the protease digestion and has structural similarity with vWA-like region, a domain mainly present in complement activation factors. MERIT40 undergoes a three-state unfolding transition pathway with a dimeric intermediate. It interacts with adaptor molecule of BRCA1-complex, called ABRAXAS, thus help in extending the bridging interaction among various members which further stabilizes the whole complex. The results presented in this paper provide first-hand information on structural and folding behavior of MERIT40. These findings will help in elucidating the role of protein-protein interactions in stabilization of BRCA1-complex.


Adaptor Proteins, Signal Transducing/chemistry , DNA Damage , DNA Repair , Adaptor Proteins, Signal Transducing/genetics , Amino Acid Sequence , BRCA1 Protein/chemistry , Carrier Proteins/chemistry , Humans , Molecular Docking Simulation , Molecular Sequence Data , Mutation , Protein Isoforms/chemistry , Protein Multimerization , Protein Stability , Protein Structure, Tertiary , Thermodynamics
7.
Article En | MEDLINE | ID: mdl-24316840

The BRCA1 holoenzyme complex plays an important role in DNA damage repair. ABRAXAS is a newly discovered component of this complex and its C-terminal region directly binds to the BRCA1 BRCT domain. Single crystals of the BRCA1 BRCT-ABRAXAS complex grown by co-crystallization belonged to space group P4(1)2(1)2, with unit-cell parameters a = b = 187.18, c = 85.31 Å. Diffraction data were collected on the BM-14 beamline at the ESRF. Molecular-replacement calculations using Phaser led to three molecules in the asymmetric unit and a high solvent content of 76%.


BRCA1 Protein/chemistry , Carrier Proteins/chemistry , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Crystallization , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Humans , Protein Binding , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
...