Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Vis Sci Technol ; 11(3): 3, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35254423

ABSTRACT

PURPOSE: Complex two-dimensional (2D) patterns of hyperfluorescent short-wave fundus autofluorescence (FAF) at the border of geographic atrophy (GA) can predict its expansion in patients with late non-exudative "dry" AMD. However, preclinical models do not phenocopy this important feature of disease. We sought to describe the spatiotemporal changes in hyperfluorescent FAF patterns that occur following acute oxidative stress, potentially in association with GA expansion. METHODS: Sprague Dawley rats (n = 54) received systemic sodium iodate (25-45 mg/kg, n = 90 eyes) or saline (n = 18 eyes) and underwent serial full fundus imaging by confocal scanning laser ophthalmoscopy, including blue FAF and delayed near-infrared analysis. Composite images of the fundus were assembled, and the 2D patterns were described qualitatively and quantitatively. A subset of eyes underwent tissue analysis, and four underwent optical coherence tomography (OCT) imaging. RESULTS: Reproducibly changing, complex patterns of hyperfluorescent FAF emerge at the borders of toxin-induced damage; however, in the absence of GA expansion, they percolate inward within the region of retinal pigment epithelium loss, evolving, maturing, and senescing in situ over time. Unexpectedly, the late FAF patterns most closely resemble the diffuse tricking form of clinical disease. A five-stage classification system is presented. CONCLUSIONS: Longitudinal, full-fundus imaging of outer retinal atrophy in the rat eye identifies evolving, complex patterns of hyperfluorescent FAF that phenocopy aspects of disease. TRANSLATIONAL RELEVANCE: This work provides a novel tool to assess hyperfluorescent FAF in association with progressive retinal atrophy, a therapeutic target in late AMD.


Subject(s)
Geographic Atrophy , Retinal Degeneration , Animals , Atrophy , Fluorescein Angiography/methods , Geographic Atrophy/diagnostic imaging , Humans , Rats , Rats, Sprague-Dawley , Retinal Degeneration/diagnostic imaging , Tomography, Optical Coherence/methods
2.
Regul Toxicol Pharmacol ; 77: 160-6, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26873774

ABSTRACT

PURPOSE: Non-invasive in vivo imaging is an increasingly used component of pre-clinical research. However, to reliably interpret data, it may be necessary to identify and document pre-existent findings prior to initiating long-term or intensive protocols, particularly where toxicity or efficacy is under investigation. Here we report here spontaneously occurring findings from the Sprague Dawley (SD) rat eye using multi-modal confocal scanning laser ophthalmoscopy (cSLO). METHODS: As part of ongoing studies, with the goal of excluding animals with abnormalities from further investigation, a total of 165 wild type SD rats (312 eyes) were assessed using cSLO imaging at baseline prior to initiating experiments to detect, describe, and determine the prevalence of spontaneous fundus findings. RESULTS: Using fundus autofluorescence (FAF) as the primary screening modality, over 30% of analyzed eyes possessed some fundus finding that differed from the normal composite reference image. Unexpectedly, 100% of eyes demonstrated a diffuse hyperfluorescent region in the posterior pole that was ultimately considered normal, and formed part of the reference. Evaluated by three independent reviewers, five groups of FAF abnormalities were defined, based primarily on shape and size of the lesion. Of these, the most extensive lesions were further analyzed using infrared reflectance (IR) and red free (RF) imaging. White light and autofluorescent microscopy of excised tissue confirmed that the extensive lesions were derived from abnormalities in both the isolated retina and posterior eyecups. CONCLUSIONS: Given the newly described hyperfluorescent glow that appears in all eyes, and the high basal rate of spontaneous lesions in the outbred SD rat, we suggest that investigators be aware of the variants of normal, and that baseline in vivo screening be considered prior to initiating intensive or expensive investigation.


Subject(s)
Fundus Oculi , Microscopy, Confocal , Ophthalmoscopy/methods , Retina/pathology , Retinal Diseases/pathology , Animals , Fluorescence , Observer Variation , Phenotype , Rats, Sprague-Dawley , Reproducibility of Results
3.
Exp Eye Res ; 137: 18-31, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26044117

ABSTRACT

The potential of hydrophobically-modified poly(vinyl pyrrolidone) as a shear-responsive, self-associative hydrogel for ophthalmic applications is demonstrated. Hydrophobic modification was achieved via random copolymerization of N-vinylpyrrolidone with N-vinylformamide, the latter of which can be hydrolyzed to expose a desired degree of reactive amine groups permitting grafting of alkyl chlorides of varying alkyl chain lengths. The resulting materials formed highly shear-responsive physical hydrogels, exhibiting tunable shear thinning over 4-5 decades of viscosity from infinite shear to zero shear conditions that facilitates lubrication upon blinking and/or facile injection or drop-based delivery to the anterior or posterior segments of the eye. Viscosity changes due to self-association over time can also be tuned by changing the length of the hydrophobe, with C18-grafted materials exhibiting prolonged thickening over several weeks to form extremely stiff hydrogels and shorter grafts equilibrating significantly faster but forming weaker gels. The hydrogels remained transparent even at very high polymer concentrations (20 wt%) and are demonstrated to facilitate controlled release of a model drug (doxorubicin). The polymers exhibit minimal cytotoxicity in vitro to human corneal epithelial cells and retinal pigment epithelial cells, particularly when lower molecular weight backbone polymers were used. In vivo assessments in rabbits indicated no significant conjunctival edema or redness, secretion, corneal opacity, or iris involvement upon anterior application. Following intravitreal injection in rat eyes, no opacification of the lens, cornea or vitreous, nor any morphological or functional change to the posterior segment was observed. Examination of wholemount tissues and histology demonstrated no adverse effect from the injection or deposition of material. As such, these shear-thinning materials offer potential for drug delivery in both the anterior and posterior segments or as a vitreal replacement that can be easily administered or removed.


Subject(s)
Eye Diseases/surgery , Hydrogels/pharmacology , Materials Testing/methods , Pyrrolidinones/pharmacology , Animals , Disease Models, Animal , Drug Delivery Systems , Humans , Hydrogels/chemistry , Hydrophobic and Hydrophilic Interactions , Pyrrolidinones/chemistry , Rabbits , Rats , Rats, Sprague-Dawley , Viscosity
4.
Article in English | MEDLINE | ID: mdl-25199595

ABSTRACT

INTRODUCTION: Traditional methods of pre-clinical ocular toxicology require that multiple cohorts of animals be sacrificed over time for terminal histological analysis. By contrast, in vivo techniques capable of following the same cohort prospectively have the potential to be efficient and cost-saving. We therefore asked if fundus autofluorescence (FAF), a non-invasive imaging technique, could detect damage to the posterior pole. Results were compared against electroretinography (ERG), another in vivo technique. The systemic toxin sodium iodate (NaIO3) was used to induce retinal pigment epithelium (RPE) damage. METHODS: FAF images (488/510nm excitation/emission) were obtained using a commercially available confocal scanning laser ophthalmoscope (cSLO; Heidelberg, HRAII) and were described qualitatively and quantitatively. NaIO3, over a dose range of 5 to 45mg/kg, or saline, was injected via tail vein in 6-10week old Sprague Dawley rats, and FAF images obtained at baseline and days 3, 7 and 14 thereafter and compared against the ERG response amplitude. RESULTS: Compared against baseline, there was no change in the FAF or ERG responses in the control, 5 or 15mg/kg NaIO3 groups. At 30mg/kg, responses fell into two groups. Half the animals developed small patches of abnormal FAF with modest reductions in the ERG amplitude; the other half developed large areas of damage and had severely reduced ERG responses. At 45mg/kg, all eyes developed extensive areas of abnormal FAF and the ERG was non- or minimally recordable. The en face size of the FAF patches was inversely correlated with the b-wave amplitude. DISCUSSION: This study demonstrates that FAF can detect chorioretinal toxicity in vivo in the rat eye, and that the findings correlate with the ERG. Such in vivo testing can enhance the detection of ocular toxicity.


Subject(s)
Fluorescein Angiography , Iodates/toxicity , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/pathology , Toxicity Tests/methods , Animals , Disease Models, Animal , Dose-Response Relationship, Drug , Iodates/analysis , Rats , Rats, Sprague-Dawley
5.
J Biomed Opt ; 19(7): 076007, 2014.
Article in English | MEDLINE | ID: mdl-25003755

ABSTRACT

Patches of atrophy of the retinal pigment epithelium (RPE) have not been described in rodent models of retinal degeneration, as they have the clinical setting using fundus autofluorescence. We hypothesize that prelabeling the RPE would increase contrast and allow for improved visualization of RPE loss in vivo. Here, we demonstrate a new technique termed "delayed near-infrared analysis (DNIRA)" that permits ready detection of rat RPE, using optical imaging in the near-infrared (IR) spectrum with aid of indocyanine green (ICG) dye. Using DNIRA, we demonstrate a fluorescent RPE signal that is detected using confocal scanning laser ophthalmoscopy up to 28 days following ICG injection. This signal is apparent only after ICG injection, is dose dependent, requires the presence of the ICG filters (795/810 nm excitation/emission), does not appear in the IR reflectance channel, and is eliminated in the presence of sodium iodate, a toxin that causes RPE loss. Rat RPE explants confirm internalization of ICG dye. Together with normal retinal electrophysiology, these findings demonstrate that DNIRA is a new and safe noninvasive optical imaging technique for in vivo visualization of the RPE in models of retinal disease.


Subject(s)
Indocyanine Green/chemistry , Optical Imaging/methods , Retinal Pigment Epithelium/cytology , Spectroscopy, Near-Infrared/methods , Animals , Indocyanine Green/metabolism , Linear Models , Rats , Rats, Sprague-Dawley , Retinal Pigment Epithelium/chemistry , Retinal Pigment Epithelium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...