Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ther Adv Respir Dis ; 18: 17534666241253990, 2024.
Article in English | MEDLINE | ID: mdl-38904297

ABSTRACT

Cystic fibrosis (CF) is an autosomal recessive disease caused by the inheritance of two mutant cystic fibrosis transmembrane conductance regulator (CFTR) alleles, one from each parent. Autosomal recessive disorders are rarely associated with germline mutations or mosaicism. Here, we propose a case of paternal germline mutation causing CF. The subject also had an identifiable maternal mutant allele. We identified the compound heterozygous variants in the proband through Sanger sequencing, and in silico studies predicted functional effects on the protein. Also, short tandem repeat markers revealed the de novo nature of the mutation. The maternal mutation in the CFTR gene was c.1000C > T. The de novo mutation was c.178G > A, p.Glu60Lys. This mutation is located in the lasso motif of the CFTR protein and, according to in silico structural analysis, disrupts the interaction of the lasso motif and R-domain, thus influencing protein function. This first reported case of de novo mutation in Asia has notable implications for molecular diagnostics, genetic counseling, and understanding the genetic etiology of recessive disorders in the Iranian population.


Identifying the first de novo mutation in the cystic fibrosis transmembrane conductance regulator protein in Iran: a case report with insights from microsatellite markersA child can develop Cystic Fibrosis (CF) if both parents pass on mutated genes. In some rare cases, new genetic mutations occur spontaneously, causing CF. This report discusses a unique case where a child has one gene with a spontaneous mutation and inherits another gene mutation from the mother. We used a method called Sanger sequencing to find the two different gene changes in the affected person. We also used computer analysis to predict how these changes might affect the protein responsible for this genetic disease. To confirm that the child's new change is not inherited, we used a type of genetic marker called microsatellite markers. The mutation inherited from the mother and the new spontaneous mutation resulted in a unique change in the responsible protein. This mutation is located in a specific part of the protein called the lasso motif. Our computer simulations show that this mutation disrupts the interaction between the lasso motif and another part of the protein called the R-domain, which ultimately affects the protein's function. This case is significant because it is the first reported instance of a de novo mutation causing CF in Asia. It has important implications for genetic testing, counseling, and understanding how recessive genetic disorders like CF occur within the Iranian population.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Microsatellite Repeats , Female , Humans , Male , Computer Simulation , Cystic Fibrosis/genetics , Cystic Fibrosis/diagnosis , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , DNA Mutational Analysis , Genetic Predisposition to Disease , Germ-Line Mutation , Iran , Phenotype , Child, Preschool , Infant
2.
Blood Cells Mol Dis ; 104: 102797, 2024 01.
Article in English | MEDLINE | ID: mdl-37826942

ABSTRACT

Hemoglobin Ernz (Hb Ernz) is a missense variant in ß-globin caused by a Threonine to Asparagine substitution at the 123rd amino acid position and HBB c.371C > A in gene level. Hb Ernz has been classified as Uncertain Significance (VUS) by ACMG due to limited reports and the absence of any homozygote genotypes. In our study, we found eight cases of Hb Ernz by DNA sequencing of the ß-globin gene during >20 years of Thalassemia Screening in individuals with borderline hematological parameters who were possible carriers of thalassemia or their spouses. We also report the first homozygote variant of Hb Ernz. Our findings suggest that the changes in hematological parameters observed in individuals with Hb Ernz are likely due to α-globin gene mutations rather than Hb Ernz itself. These findings support the reclassification of Hb Ernz as a benign variant in variant classification.


Subject(s)
Hemoglobins, Abnormal , beta-Thalassemia , Humans , Homozygote , Hemoglobins, Abnormal/genetics , beta-Thalassemia/genetics , Genotype , Mutation , beta-Globins/genetics
3.
Iran Biomed J ; 27(6): 397-403, 2023 Feb 12.
Article in English | MEDLINE | ID: mdl-38158783

ABSTRACT

Background: Methylmalonic aciduria is a rare inherited metabolic disorder with autosomal recessive inheritance pattern. There are still MMA patients without known mutations in the responsible genes. This study aimed to identify mutations in Iranian MMA families using autozygosity mapping and NGS. Methods: Multiplex PCR was performed on DNAs isolated from 12 unrelated MMA patients and their family members using 19 STR markers flanking MUT, MMAA, and MMAB genes, followed by Sanger sequencing. WES was carried out in the patients with no mutation. Results: Haplotype analysis and Sanger sequencing revealed two novel, mutations, A252Vf*5 and G87R, within the MMAA and MUT genes, respectively. Three patients showed no mutations in either autozygosity mapping or NGS analysis. Conclusion: High-frequency mutations within exons 2 and 3 of MUT gene and exon 7 of MMAB gene are consistent with the global expected frequency of genetic variations among MMA patients.

SELECTION OF CITATIONS
SEARCH DETAIL