Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
2.
Food Chem ; 456: 140025, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38876068

ABSTRACT

The misuse of antibiotics may contaminate the environment and cause harm to human health. Therefore, rapid and accurate detection of antibiotics is essential. In this study, a novel electrochemiluminescence resonance energy transfer (ECL-RET) pair was designed using a new ECL emitter (CPM, Ce-TBAPy) as the donor and Co-MOF@AuPt as the acceptor. Moreover, a highly sensitive and specific "on-off-on" ECL aptasensor was constructed for detecting sulfadiazine (SDZ). The aptasensor exhibited a broad linear range (from 10.0 fg mL-1 to 100 ng mL-1) for the SDZ concentration, with limit of detection and limit of quantification values of 1.14 fg mL-1and 3.75 fg mL-1, respectively. The aptasensor achieved good results in spiking experiments with milk and egg samples, and successfully quantified SDZ in fish meal quality control sample. The prepared aptasensor presents great potential for food and environmental safety by detecting antibiotics.

3.
BMC Genomics ; 25(1): 485, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755540

ABSTRACT

BACKGROUND: Indigenous chickens were developed through a combination of natural and artificial selection; essentially, changes in genomes led to the formation of these modern breeds via admixture events. However, their confusing genetic backgrounds include a genomic footprint regulating complex traits, which is not conducive to modern animal breeding. RESULTS: To better evaluate the candidate regions under domestication in indigenous chickens, we considered both runs of homozygosity (ROHs) and selective signatures in 13 indigenous chickens. The genomes of Silkie feather chickens presented the highest heterozygosity, whereas the highest inbreeding status and ROH number were found in Luhua chickens. Short ROH (< 1 Mb), were the principal type in all chickens. A total of 291 ROH islands were detected, and QTLdb mapping results indicated that body weight and carcass traits were the most important traits. An ROH on chromosome 2 covering VSTM2A gene was detected in 12 populations. Combined analysis with the Tajima's D index revealed that 18 genes (e.g., VSTM2A, BBOX1, and RYR2) were under selection and covered by ROH islands. Transcriptional analysis results showed that RYR2 and BBOX1 were specifically expressed in the heart and muscle tissue, respectively. CONCLUSION: Based on genome-wide scanning for ROH and selective signatures, we evaluated the genomic characteristics and detected significant candidate genes covered by ROH islands and selective signatures. The findings in this study facilitated the understanding of genetic diversity and provided valuable insights for chicken breeding and conservation strategies.


Subject(s)
Chickens , Domestication , Homozygote , Animals , Chickens/genetics , Selection, Genetic , Quantitative Trait Loci , Genome , Genomics/methods , Polymorphism, Single Nucleotide
4.
PLoS One ; 19(5): e0303869, 2024.
Article in English | MEDLINE | ID: mdl-38809853

ABSTRACT

OBJECTIVE: Carotid atherosclerosis is a chronic inflammatory disease, which is a major cause of ischemic stroke. The purpose of this study was to analyze the relationship between carotid atherosclerosis and novel inflammatory markers, including platelet to lymphocyte ratio (PLR), neutrophil to lymphocyte ratio (NLR), lymphocyte to monocyte ratio (LMR), platelet to neutrophil ratio (PNR), neutrophil to lymphocyte platelet ratio (NLPR), systemic immune-inflammation index (SII), systemic inflammation response index (SIRI), and aggregate index of systemic inflammation (AISI), in order to find the best inflammatory predictor of carotid atherosclerosis. METHOD: We included 10015 patients who underwent routine physical examinations at the physical examination center of our hospital from January 2016 to December 2019, among whom 1910 were diagnosed with carotid atherosclerosis. The relationship between novel inflammatory markers and carotid atherosclerosis was analyzed by logistic regression, and the effectiveness of each factor in predicting carotid atherosclerosis was evaluated by receiver operating characteristic (ROC) curve and area under the curve (AUC). RESULT: The level of PLR, LMR and PNR in the carotid atherosclerosis group were lower than those in the non-carotid atherosclerosis group, while NLR, NLPR, SII, SIRI and AISI in the carotid atherosclerosis group were significantly higher than those in the non-carotid atherosclerosis group. Logistic regression analysis showed that PLR, NLR, LMR, PNR, NLPR, SII, SIRI, AISI were all correlated with carotid atherosclerosis. The AUC value of NLPR was the highest, which was 0.67, the cut-off value was 0.78, the sensitivity was 65.8%, and the specificity was 57.3%. The prevalence rate of carotid atherosclerosis was 12.4% below the cut-off, 26.6% higher than the cut-off, and the prevalence rate increased by 114.5%. CONCLUSION: New inflammatory markers were significantly correlated with carotid atherosclerosis, among which NLPR was the optimum inflammatory marker to predict the risk of carotid atherosclerosis.


Subject(s)
Biomarkers , Carotid Artery Diseases , Inflammation , Humans , Carotid Artery Diseases/blood , Male , Female , Middle Aged , Biomarkers/blood , Retrospective Studies , Inflammation/blood , Case-Control Studies , Aged , Neutrophils , ROC Curve , Blood Platelets/pathology , Blood Platelets/metabolism , Lymphocytes , Monocytes/metabolism
5.
ACS Appl Mater Interfaces ; 16(14): 17300-17312, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38557010

ABSTRACT

Early secretory antigenic target-6 (ESAT-6) is regarded as the most immunogenic protein produced by Mycobacterium tuberculosis, whose detection is of great clinical significance for tuberculosis diagnosis. However, the detection of the ESAT-6 antigen has been hampered by the expensive cost and complex experimental procedures, resulting in low sensitivity. Herein, we developed a titanium carbide (Ti3C2Tx)-based aptasensor for ESAT-6 detection utilizing a triple-signal amplification strategy. First, acetylene black (AB) was immobilized on Ti3C2Tx through a cross-linking reaction to form the Ti3C2Tx-AB-PAn nanocomposite. Meanwhile, AB served as a conductive bridge, and Ti3C2Tx can synergistically promote the electron transfer of PAn. Ti3C2Tx-AB-PAn exhibited outstanding conductivity, high electrochemical signals, and abundant sites for the loading of ESAT-6 binding aptamer II (EBA II) to form a novel signal tag. Second, N-CNTs were adsorbed on NiMn layered double hydride (NiMn LDH) nanoflowers to obtain NiMn LDH/N-CNTs, exhibiting excellent conductivity and preeminent stability to be used as electrode modification materials. Third, the biotinylated EBA (EBA I) was immobilized onto a streptavidin-coated sensing interface, forming an amplification platform for further signal enhancement. More importantly, as a result of the synergistic effect of the triple-signal amplification platform, the aptasensor exhibited a wide detection linear range from 10 fg mL-1 to 100 ng mL-1 and a detection limit of 4.07 fg mL-1 for ESAT-6. We envision that our aptasensor provides a way for the detection of ESAT-6 to assist in the diagnosis of tuberculosis.


Subject(s)
Aniline Compounds , Aptamers, Nucleotide , Biosensing Techniques , Mycobacterium tuberculosis , Tuberculosis , Humans , Acetylene , Adsorption , Limit of Detection , Titanium , Tuberculosis/diagnosis , Streptavidin , Electrochemical Techniques/methods , Biosensing Techniques/methods
6.
Theriogenology ; 221: 9-17, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38521007

ABSTRACT

Semen cryopreservation represents a promising technology utilized for preserving high-quality chicken varieties in husbandry practices. However, the efficacy of this methodology is significantly impeded by the diminished quality of sperm. Metabolites, as the end products of metabolic reactions, serve as indicators of biological processes and offer insights into physiological conditions. In this study, we investigaged the sperm quality and alteration in metabolic profiles during the cryopreservation of Longyou Partridge Chicken semen. Following artificial semen collection, four groups of semen samples were established based on four points of the cryopreservation process (Ⅰ, fresh semen; Ⅱ, semen added extender and chilled at 4 °C for 30 min; Ⅲ, semen added cryoprotectants; Ⅳ, semen gradient freezed and stored in liquid nitrogen). Semen cryopreservation has a negative effect on the percentage of sperm in a straight-line trajectory (LIN), has no significant effect on total motile sperms (TM) or the proportion of sperm with typical morphology (NM). Metabolites were identified using LC-MS technique and analyses including Principal Component Analysis (PCA), Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA), Univariate statistical analysis, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database were employed to identify metabolites. A total of 2471 metabolites had been identified, with the majority of the list being made up of amino acids and their metabolites as well as benzene and substituted derivatives. Group II exhibits 882 metabolites with significantly elevated abundance relative to Group I, alongside 37 metabolites displaying decreased abundance. In Group III, 836 metabolites demonstrate notably augmented abundance compared to Group II, while 87 metabolites exhibit reduced abundance. Furthermore, Group IV showcases 513 metabolites with markedly heightened abundance in comparison to Group III, and 396 metabolites with decreased abundance. Specific metabolites such as 5-Hydroxylysine, Phosphocholine, and alpha-d-glucose-6-phosphate exhibited a progressive decline during the cryopreservation process, correlating with either dilution and chilling, cryoprotectant addition, or freezing. In conclusion, our investigation systematically examined the changes of seminal metabolome and sperm quality throughout the cryopreservation process of rooster semen.


Subject(s)
Semen Preservation , Semen , Male , Animals , Semen/physiology , Chickens/physiology , Sperm Motility , Semen Preservation/veterinary , Semen Preservation/methods , Cryopreservation/veterinary , Cryopreservation/methods , Spermatozoa/physiology , Semen Analysis/veterinary , Cryoprotective Agents/pharmacology , Cryoprotective Agents/metabolism
7.
Foods ; 13(6)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38540844

ABSTRACT

Banana is a typical cold-sensitive fruit; it is prone to chilling injury (CI), resulting in a quality deterioration and commodity reduction. However, the molecular mechanism underlying CI development is unclear. In this study, cold storage (7 °C for 5 days) was used to induce CI symptoms in bananas. As compared with the control storage (22 °C for 5 days), cold storage increased the CI index and cell membrane permeability. Moreover, we found that the expression levels of the WRKY transcription factor MaWRKY70 were increased consistently with the progression of CI development. A subcellular localization assay revealed that MaWRKY70 was localized in the nucleus. Transcriptional activation analyses showed that MaWRKY70 processed a transactivation ability. Further, an electrophoretic mobility shift assay (EMSA) and dual-luciferase reporter (DLR) assays showed that MaWRKY70 was directly bound to the W-box motifs in the promoters of four lipoxygenase (LOX) genes associated with membrane lipid degradation and activated their transcription. Collectively, these findings demonstrate that MaWRKY70 activates the transcription of MaLOXs, thereby acting as a possible positive modulator of postharvest CI development in banana fruit.

8.
Sci Data ; 11(1): 169, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38316816

ABSTRACT

Compared to commercial chickens, local breeds exhibit better in meat quality and flavour, but the productivity (e.g., growth rate, body weight) of local chicken breeds is rather low. Genetic analysis based on whole-genome sequencing contributes to elucidating the genetic markers or putative candidate genes related to some economic traits, facilitating the improvement of production performance, the acceleration of breeding progress, and the conservation of genetic resources. Here, a total of 209 local chickens from 13 breeds were investigated, and the observation of approximately 91.4% high-quality sequences (Q30 > 90%) and a mapping rate over 99% for each individual indicated good results of this study, as confirmed by a genome coverage of 97.6%. Over 19 million single nucleotide polymorphisms (SNPs) and 1.98 million insertion-deletions (InDels) were identified using the reference genome (GRCg7b), further contributing to the public database. This dataset provides valuable resources for studying genetic diversity and adaptation and for the cultivation of new chicken breeds/lines.


Subject(s)
Chickens , Genome , Animals , Chickens/genetics , China , Genetic Markers , Genetic Variation , Phenotype , Polymorphism, Single Nucleotide , Whole Genome Sequencing
9.
Geriatr Nurs ; 54: 129-134, 2023.
Article in English | MEDLINE | ID: mdl-37782975

ABSTRACT

The aim of this study was to explore effects of palliative care (PC) on patients with different heart function. Patients with NYHA (New York Heart Association) class II, III, IV were divided into separate groups. The KCCQ (Kansas City Cardiomyopathy Questionnaire) and HADS (Hospital Anxiety and Depression Scale) scores were compared before and 3 months after PC intervention. After 3 months, compared with the control group, PC could further significantly improve the KCCQ, HADS-depression and -anxiety scores of patients in NYHA class IV (P < 0.05); PC could significantly improve the HADS-depression and -anxiety scores of patients with NYHA class III (P < 0.05), and had an improvement tendency on KCCQ score. The study revealed that PC can significantly improve anxiety and depression of patients with NYHA class III or IV, and significantly improve the quality of life of patients with NYHA class IV, but had no effects on patients with NYHA class II.


Subject(s)
Heart Failure , Quality of Life , Humans , Palliative Care , Pilot Projects , Anxiety/therapy , Surveys and Questionnaires
10.
Biosens Bioelectron ; 242: 115734, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37832350

ABSTRACT

Rapid and effective detection of Mycobacterium tuberculosis (MTB) is the crux of minimizing tuberculosis (TB) spread. Consequently, a new electrochemical aptasensor based on dual-signal output for ultrasensitive detection of MTB early secreted antigenic target 6 (ESAT-6) antigen was developed. Especially, a new nanocomposite MXene/C60NPs/Au@Pt was synthesized for signal generation and amplification. In this biosensing architecture, dual independent signal outputs were achieved by coupling the electrochemical redox activity of fullerene nanoparticles (C60NPs) with the effective electrocatalytic activity of Au@Pt nanoparticles. MXene possesses a large specific surface area, allowing densely loaded of these two electroactive materials, further improved sensing capability. In addition, specific ESAT-6 antigen binding aptamers were attached to Au@Pt to create the tracer label. With a typical sandwich format along with the introduction of the gold nanoparticle-loaded molybdenum disulfide (MoS2-Au) as the sensing interface, the limit of detection (LOD) of the proposed aptasensor was 2.88 fg mL-1 (DPV measurement) and 13.50 fg mL-1 (IT measurement), respectively, with a broad linear range of 100 fg mL-1 to 50 ng mL-1. Significantly, it exhibited better specificity and accuracy with a sensitivity of 97.5% and a specificity of 96.7% to distinguish healthy donors, other lung diseases and TB patients compared to commercial ELISA assay, holding a promising prospect in clinical diagnosis.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Metal Nanoparticles , Mycobacterium tuberculosis , Tuberculosis , Humans , Gold , Biosensing Techniques/methods , Limit of Detection , Tuberculosis/diagnosis , Electrochemical Techniques/methods
11.
Mikrochim Acta ; 190(11): 445, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37851156

ABSTRACT

Ni-Zn bimetallic organic framework nanosheets (NiZn-MOF NSs) were modified onto PEI-functionalized MXene for the first time. The combination of the two kinds of nanosheets forms a sensing platform with superior conductivity and biocompatibility. On this basis, a highly sensitive biosensor was developed for the determination of sulfadimethoxine (SDM). Furthermore, Au and Mn nanoparticles decorated reduced graphene oxide (Au-Mn/rGO) was introduced as a signal hindering molecule under the target-induced amplification strategy. When the Au-Mn/rGO-labelled SDM-binding aptamer (Au-Mn/rGO-SBA) specifically bound to target SDM, it detached from the electrode, thereby further amplifying the electrochemical signal of [Fe(CN)6]3-/4-. The developed aptasensor for SDM showed excellent response signals in the range 1 pg mL-1 to 100 ng mL-1, with a limit of detection (LOD) as low as 0.22 pg mL-1. Significantly, the proposed sensor also showed satisfactory results in milk samples with recoveries ranging from 87.0 to 96.4% and RSD from 1.5 to 5.1%, which is believed to be useful in food safety assays.


Subject(s)
Graphite , Nanocomposites , Sulfadimethoxine , Graphite/chemistry , Nanocomposites/chemistry
12.
J Mater Chem B ; 11(34): 8262-8270, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37578169

ABSTRACT

Cytokeratin 19 fragment antigen 21-1 (CYFRA21-1) is a protein fragment dissolved in the blood after apoptosis of lung epithelial cells, which is a predictive biomarker for the diagnosis of non-small cell lung cancer (NSCLC). Detection of serum CYFRA21-1 has a significant clinical value in diagnosis, monitoring and prognosis of NSCLC. Herein, a novel electrochemical immunosensor was constructed for the sensitive detection of CYFRA21-1. First, superconductive carbon black (KB) functionalized polyethyleneimine (PEI)-gold nanoparticles (AuNPs) were covered on the surface of methylene blue (MB) and used as substrate materials to immobilize the CYFRA21-1 antibody. Then, target CYFRA21-1 was successfully detected using an electrochemical immunosensor through specific recognition of antigen and antibody. The zirconium-based metal organic framework of PCN-222(Fe) with a large pore size and three-dimensional (3D) structure can absorb abundant AuNPs through strong electrostatic interaction, which enhances the conductive properties of PCN-222(Fe) and prevents the self-aggregation of AuNPs. However, PCN-222(Fe) with peroxidase-like activity can catalyze the generation of hydroxyl free radicals (˙OH) from H2O2, which oxidized MB, leading to a decrease in the current signal. The signal response to the degradation of MB was recorded using differential pulse voltammetry (DPV). This indirect method of immunosensor offered a new strategy to address the limitations imposed by the poor conductivity of PCN-222(Fe), further enabling the amplification of the signal through the oxidative degradation of MB. Compared with traditional electrochemical immunosensors, this method has the advantages of a stable current signal and good reproducibility, providing a promising reference for the broad application of PCN-222(Fe) in electrochemical biosensors.


Subject(s)
Biosensing Techniques , Carcinoma, Non-Small-Cell Lung , Graphite , Lung Neoplasms , Metal Nanoparticles , Humans , Gold/chemistry , Biosensing Techniques/methods , Soot , Metal Nanoparticles/chemistry , Reproducibility of Results , Hydrogen Peroxide , Graphite/chemistry , Immunoassay/methods
13.
Br J Cancer ; 129(5): 884-894, 2023 09.
Article in English | MEDLINE | ID: mdl-37474721

ABSTRACT

BACKGROUND: It is imperative to develop novel therapeutics to overcome chemoresistance, a significant obstacle in the clinical management of prostate cancer (PCa) and other cancers. METHODS: A phenotypic screen was performed to identify novel inhibitors of chemoresistant PCa cells. The mechanism of action of potential candidate(s) was investigated using in silico docking, and molecular and cellular assays in chemoresistant PCa cells. The in vivo efficacy was evaluated in mouse xenograft models of chemoresistant PCa. RESULTS: Nicardipine exhibited high selectivity and potency against chemoresistant PCa cells via inducing apoptosis and cell cycle arrest. Computational, molecular, and cellular studies identified nicardipine as a putative inhibitor of embryonic ectoderm development (EED) protein, and the results are consistent with a proposed mechanism of action that nicardipine destabilised enhancer of zeste homologue 2 (EZH2) and inhibited key components of noncanonical EZH2 signalling, including transducer and activator of transcription 3, S-phase kinase-associated protein 2, ATP binding cassette B1, and survivin. As a monotherapy, nicardipine effectively inhibited the skeletal growth of chemoresistant C4-2B-TaxR tumours. As a combination regimen, nicardipine synergistically enhanced the in vivo efficacy of docetaxel against C4-2 xenografts. CONCLUSION: Our findings provided the first preclinical evidence supporting nicardipine as a novel EED inhibitor that has the potential to be promptly tested in PCa patients to overcome chemoresistance and improve clinical outcomes.


Subject(s)
Nicardipine , Prostatic Neoplasms , Animals , Humans , Male , Mice , Apoptosis , Cell Line, Tumor , Docetaxel/pharmacology , Docetaxel/therapeutic use , Nicardipine/pharmacology , Nicardipine/therapeutic use , Polycomb Repressive Complex 2 , Prostatic Neoplasms/drug therapy
14.
J Inorg Biochem ; 247: 112310, 2023 10.
Article in English | MEDLINE | ID: mdl-37441921

ABSTRACT

Three ruthenium arene complexes, namely {[(η6-p-cymene)Ru(Cl)]2(dpb)}(PF6)2 (1), [(η6-p-cymene)Ru(dpb)Cl](PF6) (2) and [(η6-p-cymene) Ru(dpb)py](PF6) (3) (dpb = 2,3-bis(2-pyridyl)benzo-quinoxaline, py = pyridine), were synthesized and their antitumor properties were introduced. Complexes 1-3 were characterized by 1H NMR, MS, and elemental analysis. As a binuclear ruthenium structure, the absorption of metal ligand electron transfer (MLCT) of 1 extended to 700 nm. Complex 1 was significantly hydrolyzed under dark conditions. The cytotoxicity in vitro study showed that complexes 1 and 2 are more toxic to human lung cancer cells (A549) and human cervial cancer cells (Hela) than cisplatin. Moreover, there was almost no cross-resistance between complex 1-2 and cisplatin. Under the irradiation at 478 nm, complexes 1-3 all produced singlet oxygen (1O2), and the 1O2 quantum yield of complex 1 in PBS is the highest among complexes 1-3. Complex 1 also produced 1O2 under 600 nm light irradiation. DNA gel electrophoresis showed that 1 caused the photocleavage of plasmid DNA. The hydrolysis rate of complex 1 was accelerated under light (λ > 600 nm). And the phototoxicity of complex 1 to Hela cells under light (λ > 600 nm) was much greater than its dark toxicity, which may be due to its generation of 1O2 and the promotion of its hydrolysis under long-wave light irradiation.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Ruthenium , Humans , Cisplatin , HeLa Cells , Cell Line, Tumor , Ruthenium/pharmacology , Ruthenium/chemistry , DNA/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
15.
Transl Oncol ; 34: 101707, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37271121

ABSTRACT

Chemoresistance is a major obstacle in the clinical management of metastatic, castration-resistant prostate cancer (PCa). It is imperative to develop novel strategies to overcome chemoresistance and improve clinical outcomes in patients who have failed chemotherapy. Using a two-tier phenotypic screening platform, we identified bromocriptine mesylate as a potent and selective inhibitor of chemoresistant PCa cells. Bromocriptine effectively induced cell cycle arrest and activated apoptosis in chemoresistant PCa cells but not in chemoresponsive PCa cells. RNA-seq analyses revealed that bromocriptine affected a subset of genes implicated in the regulation of the cell cycle, DNA repair, and cell death. Interestingly, approximately one-third (50/157) of the differentially expressed genes affected by bromocriptine overlapped with known p53-p21- retinoblastoma protein (RB) target genes. At the protein level, bromocriptine increased the expression of dopamine D2 receptor (DRD2) and affected several classical and non-classical dopamine receptor signal pathways in chemoresistant PCa cells, including adenosine monophosphate-activated protein kinase (AMPK), p38 mitogen-activated protein kinase (p38 MAPK), nuclear factor kappa B  (NF-κB), enhancer of zeste homolog 2 (EZH2), and survivin. As a monotherapy, bromocriptine treatment at 15 mg/kg, three times per week, via the intraperitoneal route significantly inhibited the skeletal growth of chemoresistant C4-2B-TaxR xenografts in athymic nude mice. In summary, these results provided the first preclinical evidence that bromocriptine is a selective and effective inhibitor of chemoresistant PCa. Due to its favorable clinical safety profiles, bromocriptine could be rapidly tested in PCa patients and repurposed as a novel subtype-specific treatment to overcome chemoresistance.

16.
Bioelectrochemistry ; 152: 108431, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37011475

ABSTRACT

In recent decades, the incidence of breast cancer has increased year by year, posing a serious threat to human health and quality of life, and about 30% of breast cancer patients have human epidermal growth factor receptor 2 (HER2) overexpression. Therefore, HER2 has become an important biomarker and indicator for the clinical evaluation of breast cancer in diagnosis, prognosis and recurrence. In this work, polyethyleneimine functionalized MoS2 nanoflowers (PEI-MoS2NFs) with good electrical conductivity and abundant active binding sites were designed and employed as a sensing platform for immobilizing the primary antibody of HER2 (Ab1). In addition, a La-MOF-PbO2 composite with a large specific surface area and good conductivity was used to load lots of electroactive toluidine blue (TB) and the secondary antibody of HER2 (Ab2) via gold nanoparticles (AuNPs) as the linker. Thus, the constructed sandwich-type electrochemical immunosensor was applied for sensitive detection of HER2, which showed a wide linear range from 100 fg mL-1 to 10 µg mL-1 with a lower limit of detection of 15.64 fg mL-1. Therefore, the resulting immunosensor in this study would have a potential application in clinical bioanalysis.


Subject(s)
Biosensing Techniques , Breast Neoplasms , Metal Nanoparticles , Humans , Female , Gold/chemistry , Biosensing Techniques/methods , Quality of Life , Metal Nanoparticles/chemistry , Immunoassay/methods , Antibodies , Breast Neoplasms/diagnosis , Electrochemical Techniques/methods , Limit of Detection , Antibodies, Immobilized/chemistry
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 296: 122667, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37003149

ABSTRACT

Glucose management is an important part of disease control for diabetes patients, thus the development of a rapid and real-time point of care testing (POCT) device for monitoring blood glucose is of great significance. In this work, a paper-based analytical device (PAD) is constructed by combining acetylene black (AB)-hemin complex modified filter paper as sensing platform with a smartphone as signal detector. Large specific surface area of AB decreases the self-associate and aggregate of hemin in aqueous solution, resulting in improved peroxidase-like activity of hemin. Compared with graphene oxide supported hemin, AB-hemin exhibits superior signal response on paper. Glucose oxidase (GOx) catalyzes the conversion of blood glucose to hydrogen peroxide, and then AB-hemin complex catalyzes the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue TMB oxidized products (TMB+) in the presence of hydrogen peroxide, thus achieving the visual detection of blood glucose. In optimal conditions, PAD provides an applicable linear range from 0.2 mM to 30 mM and a low limit of detection (LOD) (0.06 mM). Notably, the detection accuracy of the developed paper-based sensor is in good agreement with that of the commercially available blood glucose meter (p > 0.05). Moreover, the proposed PAD presents high recoveries from 95.4% to 112% (RSD ≤ 3.2%), and therefore holds great potential for glucose monitoring and diabetes diagnosis.


Subject(s)
Biosensing Techniques , Diabetes Mellitus , Humans , Blood Glucose , Hemin , Smartphone , Blood Glucose Self-Monitoring , Hydrogen Peroxide , Glucose , Diabetes Mellitus/drug therapy , Alkynes , Colorimetry/methods , Limit of Detection , Biosensing Techniques/methods , Glucose Oxidase
18.
J Hazard Mater ; 454: 131501, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37119573

ABSTRACT

The accurate identification and sensitive quantification of heavy metal ions are of great significance, considering that pose a serious threat to environment and human health. Most array-based sensing platforms, to date, utilize nanozymes as sensing elements, but few studies have explored the application of the peroxidase-like activity of clusterzymes in identification of multiple analytes. Herein, for the first time, we developed a clusterzyme sensor array utilizing gold nanoclusters (AuNCs) as sensing elements for five heavy metal ions identification including Hg2+, Pb2+, Cu2+, Cd2+ and Co2+. The heavy metal ions can differentially regulate the peroxidase-like activity of AuNCs, and that can be converted into colorimetric signals with 3,3',5,5'-tetramethylbenzidine (TMB) as the chromogenic substrate. Subsequently, the generated composite responses can be interpreted by combining pattern recognition algorithms. The developed clusterzyme sensor array can identify five heavy metal ions at concentrations as low as 0.5 µM and their multi-component mixtures. Especially, we demonstrated the successful identification of multiple heavy metal ions in tap water and traditional Chinese medicine, with an accuracy of 100% in blind test. This study provided a simple and effective method for identification and quantification of heavy metal ions, rendering a promising technique for environmental monitoring and drug safety assurance.


Subject(s)
Mercury , Metal Nanoparticles , Metals, Heavy , Humans , Gold , Colorimetry/methods , Antioxidants , Ions , Peroxidases
19.
Adv Healthc Mater ; 12(8): e2202287, 2023 03.
Article in English | MEDLINE | ID: mdl-36490377

ABSTRACT

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer with substantial morbidity and mortality. Herein, a new signal-on electrochemiluminescence (ECL) immunosensor based on multiple amplification strategies is constructed for ultrasensitive detection of cytokeratin 19 fragment antigen 21-1 (CYFRA21-1) biomarker related to NSCLC. Polyethyleneimine (PEI) functionalized MXene is decorated with NiMn layer double hydroxide (NiMn LDH) to form MXene-PEI-NiMn LDH composite. Specially, the La-MOF@ZIF-67 bimetallic organic framework (named as LZBM) and MXene-PEI-NiMn LDH both served as coreaction accelerators to improve the ECL emission of the luminol-H2 O2 system. To be specific, Au nanoparticles (AuNPs) coated MXene-PEI-NiMn LDH is applied to immobilize primary CYFRA21-1 antibody (Ab1 ), while AuNPs decorated LZBM was used for the loading of luminol and secondary CYFRA21-1 antibody (Ab2 ) to form tracer label. Therefore, the ECL signal of the sandwich-type immunosensor is significantly enhanced due to the high loading capability for luminol and the synergistic catalytic ability for the decomposition of H2 O2 into reactive oxygen species (ROS). Under the optimal experimental conditions, the ECL immunosensor exhibited good analytical performances for CYFRA21-1 detection with a wide linear range (100 fg mL-1 -100 ng mL-1 ) and a low limit of detection (85.20 fg mL-1 ), providing a promising method for early diagnosis of NSCLC.


Subject(s)
Biosensing Techniques , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Metal Nanoparticles , Humans , Carcinoma, Non-Small-Cell Lung/diagnosis , Luminol , Gold , Electrochemical Techniques/methods , Lung Neoplasms/diagnosis , Biosensing Techniques/methods , Luminescent Measurements/methods , Immunoassay , Biomarkers
20.
Postgrad Med ; 135(1): 72-78, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36205093

ABSTRACT

OBJECTIVE: The early detection of coronary artery disease (CAD) in diabetes mellitus is a major clinical difficulty. The purpose of this paper is to find out a convenient and economical index to help to screen for patients with CAD in diabetes mellitus. METHOD: From January 2019 to December 2019, a total of 1028 patients hospitalized in the general department of our hospital have been enrolled in our cross-sectional study, of which 190 were diagnosed with CAD and 314 with diabetes. Differences of various factors between the CAD group and the non-CAD group were analyzed. The receiver operating characteristic (ROC) curve and the area under the curve (AUC) were used to evaluate the efficacy of each factor in predicting CAD. The correlation between calcium/magnesium (Ca/Mg) ratio and the prevalence of CAD in diabetic and non-diabetic people was compared, and the cutoff of Ca/Mg ratio to predict the risk of CAD in diabetic patients was calculated. RESULTS: Logistic regression analysis showed that serum high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, calcium, magnesium, Ca/Mg ratio, hypertension, diabetes, and smoking history were all associated with CAD. Among them, the AUC value of Ca/Mg ratio was the highest of 0.70. Furthermore, in diabetes patients, the AUC value of Ca/Mg ratio to predict the risk of CAD was 0.72, the cutoff was 2.55, the sensitivity was 77.1%, and the specificity was 53.7%. The prevalence rate of CAD was 18.5% below the cutoff, 46.9% higher than the cutoff, and the prevalence rate increased by 153.5%. CONCLUSION: The Ca/Mg ratio is a good predictor of the risk of CAD in diabetes, higher than the cutoff, the prevalence rate was significantly increased.PLA IN LANGUAGE SUMMARYCAD brings great pain and burden to patient. However, CAD is asymptomatic in quiet a few cases of type 2 diabetes until myocardial infarction or sudden cardiac death occurs. In this study, we explored the association between CAD and various serum factor. We found that the Ca/Mg ratio is of excellent value in screening CAD, especially in diabetes. Moreover, we found that the cutoff of Ca/Mg ratio was 2.55 in diabetic population and the prevalence rate of CAD was 18.5% below the cutoff, 46.9% higher than the cutoff. The Ca/Mg ratio will provide good prediction of the risk of CAD and make early detection easier in diabetes.


Subject(s)
Coronary Artery Disease , Diabetes Mellitus, Type 2 , Humans , Coronary Artery Disease/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/complications , Calcium , Cross-Sectional Studies , Magnesium , Risk Factors , Cholesterol , Coronary Angiography
SELECTION OF CITATIONS
SEARCH DETAIL
...