Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Elife ; 132024 Mar 05.
Article in English | MEDLINE | ID: mdl-38441541

ABSTRACT

In order to survive, animals often need to navigate a complex odor landscape where odors can exist in airborne plumes. Several odor plume properties change with distance from the odor source, providing potential navigational cues to searching animals. Here, we focus on odor intermittency, a temporal odor plume property that measures the fraction of time odor is above a threshold at a given point within the plume and decreases with increasing distance from the odor source. We sought to determine if mice can use changes in intermittency to locate an odor source. To do so, we trained mice on an intermittency discrimination task. We establish that mice can discriminate odor plume samples of low and high intermittency and that the neural responses in the olfactory bulb can account for task performance and support intermittency encoding. Modulation of sniffing, a behavioral parameter that is highly dynamic during odor-guided navigation, affects both behavioral outcome on the intermittency discrimination task and neural representation of intermittency. Together, this work demonstrates that intermittency is an odor plume property that can inform olfactory search and more broadly supports the notion that mammalian odor-based navigation can be guided by temporal odor plume properties.


Subject(s)
Odorants , Olfactory Bulb , Animals , Mice , Olfactory Bulb/physiology , Smell/physiology , Behavior, Animal , Mammals
2.
J Neurophysiol ; 129(2): 431-444, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36598147

ABSTRACT

To understand the operation of the olfactory system, it is essential to know how information is encoded in the olfactory bulb. We applied Shannon information theoretic methods to address this, with signals from up to 57 glomeruli simultaneously optically imaged from presynaptic inputs in glomeruli in the mouse dorsal (dOB) and lateral (lOB) olfactory bulb, in response to six exemplar pure chemical odors. We discovered that, first, the tuning of these signals from glomeruli to a set of odors is remarkably broad, with a mean sparseness of 0.83 and a mean signal correlation of 0.64. Second, both of these factors contribute to the low information that is available from the responses of even populations of many tens of glomeruli, which was only 1.35 bits across 33 glomeruli on average, compared with the 2.58 bits required to perfectly encode these six odors. Third, although there is considerable interest in the possibility of temporal encoding of stimulus including odor identity, the amount of information in the temporal aspects of the presynaptic glomerular responses was low (mean 0.11 bits) and, importantly, was redundant with respect to the information available from the rates. Fourth, the information from simultaneously recorded glomeruli asymptotes very gradually and nonlinearly, showing that glomeruli do not have independent responses. Fifth, the information from a population became available quite rapidly, within 100 ms of sniff onset, and the peak of the glomerular response was at 200 ms. Sixth, the information from the lOB was not additive with that of the dOB.NEW & NOTEWORTHY We report broad tuning and low odor information available across the lateral and dorsal bulb populations of glomeruli. Even though response latencies can be significantly predictive of stimulus identity, such contained very little information and none that was not redundant with information based on rate coding alone. Last, in line with the emerging notion of the important role of earliest stages of responses ("primacy"), we report a very rapid rise in information after each inhalation.


Subject(s)
Odorants , Olfactory Bulb , Mice , Animals , Olfactory Bulb/physiology , Smell/physiology , Olfactory Pathways/physiology
3.
Neurogastroenterol Motil ; 32(9): e13894, 2020 09.
Article in English | MEDLINE | ID: mdl-32468651

ABSTRACT

BACKGROUND: Commonly used methods to measure whole gut transit time in rodents have yet to combine high sensitivity, objectivity, and automation. We have developed a novel method using oral gavage of non-toxic fluorescent dye particles and their detection by fluorescence imaging to enable unbiased automated detection of gut transit time simultaneously in 8 cages. METHODS: Naïve mice (n = 20) were gavaged with a non-caloric viscous suspension of 4.4% fluorescent dye in 3 groups on 2 occasions. Each group was imaged in 8 cages at 5-minute intervals using blue LEDs for illumination and a Sony full-frame mirrorless camera with a green band-pass emission filter. Custom MATLAB code counted the number of fluorescent boli per cage post hoc and provided graphical and spreadsheet output. Boli counts across a wide range of parameters were compared to blind assessments by an experimenter. RESULTS: Fluorescent boli were detected with high sensitivity, while unstained boli were readily rejected. All cages showed no fluorescent boli for the first ~20 frames (100 minutes), after which many cages gradually show a rise to 1-6 fluorescent boli. The mean time to first fluorescent bolus in each session was 264 ± 141 and 223 ± 81 minutes post-gavage, with no within subject consistency. There was high correlation between automated scores and that of experimenter (r = .95 ± .02), being robust to parameter changes. CONCLUSIONS AND INFERENCES: This novel approach provides a reliable, automatic, and low-cost method of measuring gastrointestinal transit time in mice.


Subject(s)
Gastrointestinal Motility/physiology , Gastrointestinal Transit/physiology , Animals , Diagnostic Imaging , Female , Fluorescence , Mice
4.
Neuroimage ; 212: 116664, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32087375

ABSTRACT

Odorants can reach olfactory receptor neurons (ORNs) by two routes: orthonasally, when volatiles enter the nasal cavity during inhalation/sniffing, and retronasally, when food volatiles released in the mouth pass into the nasal cavity during exhalation/eating. Previous work in humans has shown that both delivery routes of the same odorant can evoke distinct perceptions and patterns of neural responses in the brain. Each delivery route is known to influence specific responses across the dorsal region of the glomerular sheet in the olfactory bulb (OB), but spatial distributions across the entire glomerular sheet throughout the whole OB remain largely unexplored. We used functional MRI (fMRI) to measure and compare activations across the entire glomerular sheet in rat OB resulting from both orthonasal and retronasal stimulations of the same odors. We observed reproducible fMRI activation maps of the whole OB during both orthonasal and retronasal stimuli. However, retronasal stimuli required double the orthonasal odor concentration for similar response amplitudes. Regardless, both the magnitude and spatial extent of activity were larger during orthonasal versus retronasal stimuli for the same odor. Orthonasal and retronasal response patterns show overlap as well as some route-specific dominance. Orthonasal maps were dominant in dorsal-medial regions, whereas retronasal maps were dominant in caudal and lateral regions. These different whole OB encodings likely underlie differences in odor perception between these biologically important routes for odorants among mammals. These results establish the relationships between orthonasal and retronasal odor representations in the rat OB.


Subject(s)
Olfactory Bulb/physiology , Olfactory Perception/physiology , Administration, Intranasal/methods , Animals , Magnetic Resonance Imaging , Nasal Cavity/physiology , Nasopharynx/physiology , Odorants , Rats , Rats, Sprague-Dawley
5.
PLoS Biol ; 17(9): e3000409, 2019 09.
Article in English | MEDLINE | ID: mdl-31532763

ABSTRACT

The mammalian olfactory bulb (OB) plays an essential role in odor processing during the perception of smell. Optical imaging of the OB has proven to be a key tool in elucidating the spatial odor mapping and temporal dynamics that underlie higher-order odor processing. Much is known about the activation of olfactory sensory neuron (OSN) glomerular responses in the dorsal olfactory bulb (dOB) during odor presentation. However, the dorsal bulb provides access to only approximately 25% of all glomeruli, and little is known about how the lateral bulb functions during this critical process. Here, we report, for the first time, simultaneous measurements of OSN glomerular activity from both the dOB and the lateral olfactory bulb (lOB), thus describing odor-specific spatial mapping and the temporal dynamics of olfactory input to both the dorsal and lateral bulb. Odor responses in the lateral bulb tended to be most prominent in the dorso-lateral (D-L) region. Lateral glomeruli became active in a dorso-ventral (D-V) sequence upon odor inhalation, unlike the anterio-posterior (A-P) activity wave typical of the dorsal glomeruli. Across the entire D-L bulb, the spatial organization of these dynamics can be explained neither by the purely mechanosensitive dynamics (to breathing clean air) nor by the response amplitudes across glomeruli. Instead, these dynamics can be explained by a combination of zonal receptor distributions, associated OB projections, and air flow paths across the epithelium upon inhalation. Remarkably, we also found that a subset of OSN glomeruli in the lOB was highly sensitive to extranasal air pressure changes, a response type that has not been reported in dorsal glomeruli.


Subject(s)
Olfactory Bulb/physiology , Olfactory Perception/physiology , Animals , Brain Mapping , Female , Male , Mechanotransduction, Cellular , Mice, Transgenic , Odorants , Olfactory Bulb/diagnostic imaging , Smell
6.
J Neurosci ; 38(44): 9383-9389, 2018 10 31.
Article in English | MEDLINE | ID: mdl-30381430

ABSTRACT

Localizing the sources of stimuli is essential. Most organisms cannot eat, mate, or escape without knowing where the relevant stimuli originate. For many, if not most, animals, olfaction plays an essential role in search. While microorganismal chemotaxis is relatively well understood, in larger animals the algorithms and mechanisms of olfactory search remain mysterious. In this symposium, we will present recent advances in our understanding of olfactory search in flies and rodents. Despite their different sizes and behaviors, both species must solve similar problems, including meeting the challenges of turbulent airflow, sampling the environment to optimize olfactory information, and incorporating odor information into broader navigational systems.


Subject(s)
Algorithms , Environment , Odorants , Smell/physiology , Animals , Humans , Memory/physiology , Species Specificity
7.
Neuroimage ; 172: 586-596, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29374582

ABSTRACT

Fluctuations in spontaneous activity have been observed by many neuroimaging techniques, but because these resting-state changes are not evoked by stimuli, it is difficult to determine how they relate to task-evoked activations. We conducted multi-modal neuroimaging scans of the rat olfactory bulb, both with and without odor, to examine interaction between spontaneous and evoked activities. Independent component analysis of spontaneous fluctuations revealed resting-state networks, and odor-evoked changes revealed activation maps. We constructed simulated activation maps using resting-state networks that were highly correlated to evoked activation maps. Simulated activation maps derived by intrinsic optical signal (IOS), which covers the dorsal portion of the glomerular sheet, significantly differentiated one odor's evoked activation map from the other two. To test the hypothesis that spontaneous activity of the entire glomerular sheet is relevant for representing odor-evoked activations, we used functional magnetic resonance imaging (fMRI) to map the entire glomerular sheet. In contrast to the IOS results, the fMRI-derived simulated activation maps significantly differentiated all three odors' evoked activation maps. Importantly, no evoked activation maps could be significantly differentiated using simulated activation maps produced using phase-randomized resting-state networks. Given that some highly organized resting-state networks did not correlate with any odors' evoked activation maps, we posit that these resting-state networks may characterize evoked activation maps associated with odors not studied. These results emphasize that fluctuations in spontaneous activity form a foundation for active processing, signifying the relevance of resting-state mapping to functional neuroimaging.


Subject(s)
Brain Mapping/methods , Olfactory Bulb/physiology , Olfactory Perception/physiology , Animals , Image Processing, Computer-Assisted , Magnetic Resonance Imaging/methods , Male , Odorants , Rats , Rats, Sprague-Dawley
8.
Cell Rep ; 18(4): 905-917, 2017 01 24.
Article in English | MEDLINE | ID: mdl-28122241

ABSTRACT

Cholinergic neurotransmission throughout the neocortex and hippocampus regulates arousal, learning, and attention. However, owing to the poorly characterized timing and location of acetylcholine release, its detailed behavioral functions remain unclear. Using electrochemical biosensors chronically implanted in mice, we made continuous measurements of the spatiotemporal dynamics of acetylcholine release across multiple behavioral states. We found that tonic levels of acetylcholine release were coordinated between the prefrontal cortex and hippocampus and maximal during training on a rewarded working memory task. Tonic release also increased during REM sleep but was contingent on subsequent wakefulness. In contrast, coordinated phasic acetylcholine release occurred only during the memory task and was strongly localized to reward delivery areas without being contingent on trial outcome. These results show that coordinated acetylcholine release between the prefrontal cortex and hippocampus is associated with reward and arousal on distinct timescales, providing dual mechanisms to support learned behavior acquisition during cognitive task performance.


Subject(s)
Acetylcholine/analysis , Arousal , Hippocampus/metabolism , Prefrontal Cortex/metabolism , Reward , Acetylcholine/metabolism , Animals , Behavior, Animal , Biosensing Techniques , Electrochemical Techniques , Electrodes, Implanted , Hippocampus/pathology , Locomotion , Male , Maze Learning , Memory, Short-Term , Mice , Mice, Inbred C57BL , Prefrontal Cortex/pathology , Sleep, REM , Wakefulness
9.
Front Aging Neurosci ; 8: 268, 2016.
Article in English | MEDLINE | ID: mdl-27895577

ABSTRACT

Insufficient advances in the development of effective therapeutic treatments of sporadic Alzheimer's Disease (sAD) to date are largely due to the lack of sAD-relevant animal models. While the vast majority of models do recapitulate AD's hallmarks of plaques and tangles by virtue of tau and/or beta amyloid overexpression, these models do not reflect the fact that in sAD (unlike familial AD) these genes are not risk factors per se and that other mechanisms like oxidative stress, metabolic dysregulation and inflammation play key roles in AD etiology. Here we characterize and propose the Fus1 KO mice that lack a mitochondrial protein Fus1/Tusc2 as a new sAD model. To establish sAD relevance, we assessed sAD related deficits in Fus1 KO and WT adult mice of 4-5 months old, the equivalent human age when the earliest cognitive and olfactory sAD symptoms arise. Fus1 KO mice showed oxidative stress (increased levels of ROS, decreased levels of PRDX1), disruption of metabolic homeostasis (decreased levels of ACC2, increased phosphorylation of AMPK), autophagy (decreased levels of LC3-II), PKC (decreased levels of RACK1) and calcium signaling (decreased levels of Calb2) in the olfactory bulb and/or hippocampus. Mice were behaviorally tested using objective and accurate video tracking (Noldus), in which Fus1 KO mice showed clear deficits in olfactory memory (decreased habituation/cross-habituation in the short and long term), olfactory guided navigation memory (inability to reduce their latency to find the hidden cookie), spatial memory (learning impairments on finding the platform in the Morris water maze) and showed more sleep time during the diurnal cycle. Fus1 KO mice did not show clear deficits in olfactory perception (cross-habituation), association memory (passive avoidance) or in species-typical behavior (nest building) and no increased anxiety (open field, light-dark box) or depression/anhedonia (sucrose preference) at this relatively young age. These neurobehavioral deficits of the Fus1 KO mice at this relatively young age are highly relevant to sAD, making them suitable for effective research on pharmacological targets in the context of early intervention of sAD.

10.
Analyst ; 140(11): 3738-45, 2015 Jun 07.
Article in English | MEDLINE | ID: mdl-25519498

ABSTRACT

A first generation Pt-based polymer enzyme composite biosensor developed for real-time neurochemical monitoring was characterised in vivo for sensitive and selective detection of choline. Confirmation that the sensor responds to changes in extracellular choline was achieved using local perfusion of choline which resulted in an increase in current, and the acetylcholinesterase inhibitor neostigmine which produced a decrease. Interference by electroactive species was tested using systemic administration of sodium ascorbate which produced a rapid increase in extracellular levels before gradually returning towards baseline over several hours. There was no overall change in the response of the biosensor during the same period of monitoring. Oxygen interference was examined using pharmacological agents known to change tissue oxygenation. Chloral hydrate produced an immediate increase in O2 before gradually returning to baseline levels over 3 h. The biosensor signal displayed an initial brief decrease before increasing to a maximum after 1 h and returning to baseline within 2 h. L-NAME caused a decrease in O2 before returning to baseline levels after ca. 1.5 h. In contrast, the biosensor current increased over the same time period before slowly returning to baseline levels over several hours. Such differences in time course and direction suggest that changes in tissue O2 levels do not affect the ability of the sensor to monitor choline reliably. Although it was found to rapidly respond to behavioural activation, examination of baseline in vivo data suggests a stable viable signal for at least 14 days after implantation. Using in vitro calibration data the basal extracellular concentration of choline was estimated to be 6.3 µM.


Subject(s)
Biosensing Techniques/methods , Brain/cytology , Choline/metabolism , Extracellular Space/metabolism , Animals , Biosensing Techniques/instrumentation , Electrochemistry , Male , Microelectrodes , Platinum/chemistry , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...