Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(2)2022 Jan 08.
Article in English | MEDLINE | ID: mdl-35055222

ABSTRACT

Today, public health is one of the most important challenges in society. Cancer is the leading cause of death, so early diagnosis and localized treatments that minimize side effects are a priority. Magnetic nanoparticles have shown great potential as magnetic resonance imaging contrast agents, detection tags for in vitro biosensing, and mediators of heating in magnetic hyperthermia. One of the critical characteristics of nanoparticles to adjust to the biomedical needs of each application is their polymeric coating. Fatty acid coatings are known to contribute to colloidal stability and good surface crystalline quality. While monolayer coatings make the particles hydrophobic, a fatty acid double-layer renders them hydrophilic, and therefore suitable for use in body fluids. In addition, they provide the particles with functional chemical groups that allow their bioconjugation. This work analyzes three types of self-assembled bilayer fatty acid coatings of superparamagnetic iron oxide nanoparticles: oleic, lauric, and myristic acids. We characterize the particles magnetically and structurally and study their potential for resonance imaging, magnetic hyperthermia, and labeling for biosensing in lateral flow immunoassays. We found that the myristic acid sample reported a large r2 relaxivity, superior to existing iron-based commercial agents. For magnetic hyperthermia, a significant specific absorption rate value was obtained for the oleic sample. Finally, the lauric acid sample showed promising results for nanolabeling.

2.
Soft Matter ; 18(3): 626-639, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34931628

ABSTRACT

High magnetization Fe3O4/OA-FeCo/Al2O3 nanocomposite magnetic clusters have been obtained using a modified oil-in-water miniemulsion method. These nanocomposite clusters dispersed in a ferrofluid carrier result in a magnetorheological fluid with improved characteristics. The magnetic clusters have a magnetic core consisting of a mixture of magnetite nanoparticles of about 6 nm average size, stabilized with oleic acid (Fe3O4/OA) and FeCo/Al2O3 particles of about 50 nm average size, compactly packed in the form of spherical clusters with a diameter distribution in the range 100-300 nm and a hydrophilic coating of sodium lauryl sulphate surfactant. The surface chemical composition of the Fe3O4/OA-FeCo/Al2O3 clusters investigated by XPS indicates the presence of the Co2+ and Co3+ oxidation states of cobalt and the components of Fe2+ and Fe3+ characteristic to both an enhanced oxidation state at the surface of the FeCo particles and to the presence of magnetic nanoparticles of spinel structure which are decorating the supporting FeCo. This specific decorating morphology is also indicated by TEM images. Advanced characterization of the Fe3O4/OA-FeCo/Al2O3 magnetic clusters has been performed using Mössbauer spectroscopy and magnetization measurements at various temperatures between 6 K and 200 K. The unexpected formation of Co ferrite decorating nanoparticles was supported by Mössbauer spectroscopy. The dispersion of magnetic clusters in the ferrofluid carrier highly influences the flow properties in the absence of the field (shear thinning for low and moderate shear rates) and especially in applied magnetic field, when significant magnetoviscous effect and shear thinning was observed for the whole range of shear rate values. Detailed analysis of the magnetorheological behavior of the nanocomposite magnetic clusters dispersed in a ferrofluid carrier evidence significantly higher normalized dynamic yield stress values in comparison with the magnetite nanocluster suspensions of the same mass concentration, a promising result for this new type of nanocomposite magnetorheological fluid.

3.
Mater Sci Eng C Mater Biol Appl ; 126: 112117, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34082934

ABSTRACT

Controlled pulmonary drug delivery systems employing non-spherical particles as drug carriers attract considerable attention nowadays. Such anisotropic morphologies may travel deeper into the lung airways, thus enabling the efficient accumulation of therapeutic compounds at the point of interest and subsequently their sustained release. This study focuses on the fabrication of electrospun superparamagnetic polymer-based biodegradable microrods consisting of poly(l-lactide) (PLLA), polyethylene oxide (PEO) and oleic acid-coated magnetite nanoparticles (OA·Fe3O4). The production of magnetite-free (0% wt. OA·Fe3O4) and magnetite-loaded (50% and 70% wt. Fe3O4) microrods was realized upon subjecting the as-prepared electrospun fibers to UV irradiation, followed by sonication. Moreover, drug-loaded microrods were fabricated incorporating methyl 4-hydroxybenzoate (MHB) as a model pharmaceutical compound and the drug release profile from both, the drug-loaded membranes and the corresponding microrods was investigated in aqueous media. In addition, the magnetic properties of the produced materials were exploited for remote induction of hyperthermia under AC magnetic field, while the possibility to reduce transport losses and enhance the targeted delivery to lower airways by manipulation of the airborne microrods by DC magnetic field was also demonstrated.


Subject(s)
Heating , Magnetite Nanoparticles , Drug Delivery Systems , Lung , Magnetic Phenomena , Magnetics
SELECTION OF CITATIONS
SEARCH DETAIL
...