Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Endocr Soc ; 8(9): bvae140, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39145114

ABSTRACT

Context: Adrenal incidentalomas, including nonfunctioning adrenal incidentalomas (NFAI), are associated with a high prevalence of diabetes mellitus (DM). While NFAI is diagnosed by exclusion when no hormone excess exists, subtle cortisol secretion may exist and contribute to DM development. However, it alone cannot explain the increased risk, and whether other steroid metabolites are involved remains unclear. Purpose: To investigate steroid metabolites associated with DM in patients with NFAI using plasma steroid profiles. Methods: Using liquid chromatography-tandem mass spectrometry, 22 plasma steroid metabolites were measured in 68 patients with NFAI (31 men and 37 women). Data were adjusted for age before normalization. Results: Discriminant analysis showed that plasma steroid profiles discriminated between patients with and without DM in men (n = 10 and = 21, respectively) but not women: 11ß-hydroxytestosterone, an adrenal-derived 11-oxygenated androgen, contributed most to this discrimination and was higher in patients with DM than in those without DM (false discovery rate = .002). 11ß-hydroxytestosterone was correlated positively with fasting plasma glucose (r = .507) and hemoglobin A1c (HbA1c) (r = .553) but negatively with homeostatic model assessment of ß-cell function (HOMA2-B) (r = -.410). These correlations remained significant after adjusting for confounders, including serum cortisol after the 1-mg dexamethasone suppression test. Bayesian kernel machine regression analysis verified the association of 11ß-hydroxytestosterone with HbA1c and HOMA2-B in men. Main Conclusion: Plasma steroid profiles differed between those with and without DM in men with NFAI. 11ß-hydroxytestosterone was associated with hyperglycemia and indicators related to pancreatic ß-cell dysfunction, independently of cortisol.

2.
J Lipid Res ; : 100621, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39151590

ABSTRACT

The rapid increase in lipidomic studies has led to a collaborative effort within the community to establish standards and criteria for producing, documenting, and disseminating data. Creating a dynamic easy-to-use checklist that condenses key information about lipidomic experiments into common terminology will enhance the field's consistency, comparability, and repeatability. Here, we describe the structure and rationale of the established Lipidomics Minimal Reporting Checklist to increase transparency in lipidomics research.

3.
Cancer Sci ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39113435

ABSTRACT

Cholangiocarcinoma is a fatal disease with limited therapeutic options. We screened genes required for cholangiocarcinoma tumorigenicity and identified FADS2, a delta-6 desaturase. FADS2 depletion reduced in vivo tumorigenicity and cell proliferation. In clinical samples, FADS2 was expressed in cancer cells but not in stromal cells. FADS2 inhibition also reduced the migration and sphere-forming ability of cells and increased apoptotic cell death and ferroptosis markers. Lipidome assay revealed that triglyceride and cholesterol ester levels were decreased in FADS2-knockdown cells. The oxygen consumption ratio was also decreased in FADS2-depleted cells. These data indicate that FADS2 depletion causes a reduction in lipid levels, resulting in decrease of energy production and attenuation of cancer cell malignancy.

4.
FEBS J ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39011799

ABSTRACT

Upregulation of nuclear factor κB (NFκB) signaling is a hallmark of aging and a major cause of age-related chronic inflammation. However, its effect on cellular senescence remains unclear. Here, we show that alteration of NFκB nuclear dynamics from oscillatory to sustained by depleting a negative feedback regulator of NFκB pathway, NFκB inhibitor alpha (IκBα), in the presence of tumor necrosis factor α (TNFα) promotes cellular senescence. Sustained NFκB activity enhanced inflammatory gene expression through increased NFκB-DNA binding and slowed the cell cycle. IκBα protein was decreased under replicative or oxidative stress in vitro. Furthermore, a decrease in IκBα protein and an increase in DNA-NFκB binding at the transcription start sites of age-associated genes in aged mouse hearts suggested that nuclear NFκB dynamics may play a critical role in the progression of aging. Our study suggests that nuclear NFκB dynamics-dependent epigenetic changes regulated over time in a living system, possibly through a decrease in IκBα, enhance the expression of inflammatory genes to advance the cells to a senescent state.

5.
Mol Metab ; 84: 101954, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718896

ABSTRACT

OBJECTIVE: The human adrenal cortex comprises three functionally and structurally distinct layers that produce layer-specific steroid hormones. With aging, the human adrenal cortex undergoes functional and structural alteration or "adrenal aging", leading to the unbalanced production of steroid hormones. Given the marked species differences in adrenal biology, the underlying mechanisms of human adrenal aging have not been sufficiently studied. This study was designed to elucidate the mechanisms linking the functional and structural alterations of the human adrenal cortex. METHODS: We conducted single-cell RNA sequencing and spatial transcriptomics analysis of the aged human adrenal cortex. RESULTS: The data of this study suggest that the layer-specific alterations of multiple signaling pathways underlie the abnormal layered structure and layer-specific changes in steroidogenic cells. We also highlighted that macrophages mediate age-related adrenocortical cell inflammation and senescence. CONCLUSIONS: This study is the first detailed analysis of the aged human adrenal cortex at single-cell resolution and helps to elucidate the mechanism of human adrenal aging, thereby leading to a better understanding of the pathophysiology of age-related disorders associated with adrenal aging.


Subject(s)
Adrenal Cortex , Aging , Single-Cell Analysis , Transcriptome , Humans , Aging/genetics , Aging/metabolism , Single-Cell Analysis/methods , Adrenal Cortex/metabolism , Male , Gene Expression Profiling/methods , Aged , Adult , Female , Middle Aged , Macrophages/metabolism
6.
Nat Metab ; 6(6): 1108-1127, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38822028

ABSTRACT

Oxygen is critical for all metazoan organisms on the earth and impacts various biological processes in physiological and pathological conditions. While oxygen-sensing systems inducing acute hypoxic responses, including the hypoxia-inducible factor pathway, have been identified, those operating in prolonged hypoxia remain to be elucidated. Here we show that pyridoxine 5'-phosphate oxidase (PNPO), which catalyses bioactivation of vitamin B6, serves as an oxygen sensor and regulates lysosomal activity in macrophages. Decreased PNPO activity under prolonged hypoxia reduced an active form of vitamin B6, pyridoxal 5'-phosphate (PLP), and inhibited lysosomal acidification, which in macrophages led to iron dysregulation, TET2 protein loss and delayed resolution of the inflammatory response. Among PLP-dependent metabolism, supersulfide synthesis was suppressed in prolonged hypoxia, resulting in the lysosomal inhibition and consequent proinflammatory phenotypes of macrophages. The PNPO-PLP axis creates a distinct layer of oxygen sensing that gradually shuts down PLP-dependent metabolism in response to prolonged oxygen deprivation.


Subject(s)
Lysosomes , Macrophages , Pyridoxal Phosphate , Lysosomes/metabolism , Macrophages/metabolism , Animals , Mice , Pyridoxal Phosphate/metabolism , Hypoxia/metabolism , Cell Hypoxia , Vitamin B 6/metabolism , Oxygen/metabolism , Inflammation/metabolism
7.
Sci Adv ; 10(17): eadk1045, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38657065

ABSTRACT

T helper 17 (TH17) cells are implicated in autoimmune diseases, and several metabolic processes are shown to be important for their development and function. In this study, we report an essential role for sphingolipids synthesized through the de novo pathway in TH17 cell development. Deficiency of SPTLC1, a major subunit of serine palmitoyl transferase enzyme complex that catalyzes the first and rate-limiting step of de novo sphingolipid synthesis, impaired glycolysis in differentiating TH17 cells by increasing intracellular reactive oxygen species (ROS) through enhancement of nicotinamide adenine dinucleotide phosphate oxidase 2 activity. Increased ROS leads to impaired activation of mammalian target of rapamycin C1 and reduced expression of hypoxia-inducible factor 1-alpha and c-Myc-induced glycolytic genes. SPTLCI deficiency protected mice from developing experimental autoimmune encephalomyelitis and experimental T cell transfer colitis. Our results thus show a critical role for de novo sphingolipid biosynthetic pathway in shaping adaptive immune responses with implications in autoimmune diseases.


Subject(s)
Cell Differentiation , Encephalomyelitis, Autoimmune, Experimental , Serine C-Palmitoyltransferase , Sphingolipids , Th17 Cells , Animals , Sphingolipids/metabolism , Sphingolipids/biosynthesis , Th17 Cells/immunology , Th17 Cells/metabolism , Th17 Cells/cytology , Mice , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/immunology , Serine C-Palmitoyltransferase/metabolism , Serine C-Palmitoyltransferase/genetics , Reactive Oxygen Species/metabolism , Glycolysis , Mice, Knockout , Colitis/metabolism , Colitis/pathology , Mice, Inbred C57BL
8.
iScience ; 27(3): 109121, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38524370

ABSTRACT

Dysregulation of liver metabolism associated with obesity during feeding and fasting leads to the breakdown of metabolic homeostasis. However, the underlying mechanism remains unknown. Here, we measured multi-omics data in the liver of wild-type and leptin-deficient obese (ob/ob) mice at ad libitum feeding and constructed a differential regulatory trans-omic network of metabolic reactions. We compared the trans-omic network at feeding with that at 16 h fasting constructed in our previous study. Intermediate metabolites in glycolytic and nucleotide metabolism decreased in ob/ob mice at feeding but increased at fasting. Allosteric regulation reversely shifted between feeding and fasting, generally showing activation at feeding while inhibition at fasting in ob/ob mice. Transcriptional regulation was similar between feeding and fasting, generally showing inhibiting transcription factor regulations and activating enzyme protein regulations in ob/ob mice. The opposite metabolic dysregulation between feeding and fasting characterizes breakdown of metabolic homeostasis associated with obesity.

9.
PNAS Nexus ; 3(3): pgae097, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38487162

ABSTRACT

Cytosolic sulfotransferases (SULTs) are cytosolic enzymes that catalyze the transfer of sulfonate group to key endogenous compounds, altering the physiological functions of their substrates. SULT enzymes catalyze the O-sulfonation of hydroxy groups or N-sulfonation of amino groups of substrate compounds. In this study, we report the discovery of C-sulfonation of α,ß-unsaturated carbonyl groups mediated by a new SULT enzyme, SULT7A1, and human SULT1C4. Enzymatic assays revealed that SULT7A1 is capable of transferring the sulfonate group from 3'-phosphoadenosine 5'-phosphosulfate to the α-carbon of α,ß-unsaturated carbonyl-containing compounds, including cyclopentenone prostaglandins as representative endogenous substrates. Structural analyses of SULT7A1 suggest that the C-sulfonation reaction is catalyzed by a novel mechanism mediated by His and Cys residues in the active site. Ligand-activity assays demonstrated that sulfonated 15-deoxy prostaglandin J2 exhibits antagonist activity against the prostaglandin receptor EP2 and the prostacyclin receptor IP. Modification of α,ß-unsaturated carbonyl groups via the new prostaglandin-sulfonating enzyme, SULT7A1, may regulate the physiological function of prostaglandins in the gut. Discovery of C-sulfonation of α,ß-unsaturated carbonyl groups will broaden the spectrum of potential substrates and physiological functions of SULTs.

10.
Mass Spectrom (Tokyo) ; 13(1): A0143, 2024.
Article in English | MEDLINE | ID: mdl-38410254

ABSTRACT

In metabolomic analysis, one of the most commonly used techniques to support the detection sensitivity and quantitation of mass spectrometry is combining it with liquid chromatography. Recently, we developed a method that enables comprehensive single-run measurement of hydrophilic metabolites using unified-hydrophilic interaction/anion exchange liquid chromatography/high-resolution mass spectrometry (unified-HILIC/AEX/HRMS) with a polymer-based mixed amines column (Gelpack GL-HilicAex). However, the importance of stationary phase functional groups and mobile phase conditions for the separation mechanisms and sensitive detection in unified-HILIC/AEX/HRMS is not yet fully understood. This study aimed to understand the importance of the mobile and stationary phases in unified-HILIC/AEX/HRMS. Two different alkali-resistant polymer-based amines-modified columns (Gelpack GL-HilicAex, primary, secondary, tertiary, and quaternary amine-modified polyglycerol dimethacrylate gel; Asahipak NH2P-50 2D, secondary amine-modified polyvinyl alcohol gel) and two eluents (acetonitrile and ammonium bicarbonate solution, pH 9.8) were used for comparative validation. A comparison of mobile phase conditions using both columns confirmed that the two-step separation from HILIC to AEX characteristic of unified-HILIC/AEX requires a linear gradient condition from acetonitrile to nearly 50% water and AEX with up to 40 mM bicarbonate ions. We found that when alkali-resistant hydrophilic polymer packing materials are modified with amines, unified-HILIC/AEX separation can be reproduced if at least one secondary amine associated with the amine series is present in the stationary phase. Furthermore, the difference in sensitivity in the HILIC and AEX modes owing to the different columns indicates the need for further improvements in the mobile phase composition and stationary phase.

11.
Anal Chem ; 96(3): 1275-1283, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38186224

ABSTRACT

The accuracy of the structural annotation of unidentified peaks obtained in metabolomic analysis using liquid chromatography/tandem mass spectrometry (LC/MS/MS) can be enhanced using retention time (RT) information as well as precursor and product ions. Unified-hydrophilic-interaction/anion-exchange liquid chromatography high-resolution tandem mass spectrometry (unified-HILIC/AEX/HRMS/MS) has been recently developed as an innovative method ideal for nontargeted polar metabolomics. However, the RT prediction for unified-HILIC/AEX has not been developed because of the complex separation mechanism characterized by the continuous transition of the separation modes from HILIC to AEX. In this study, we propose an RT prediction model of unified-HILIC/AEX/HRMS/MS, which enables the comprehensive structural annotation of polar metabolites. With training data for 203 polar metabolites, we ranked the feature importance using a random forest among 12,420 molecular descriptors (MDs) and constructed an RT prediction model with 26 selected MDs. The accuracy of the RT model was evaluated using test data for 51 polar metabolites, and 86.3% of the ΔRTs (difference between measured and predicted RTs) were within ±1.50 min, with a mean absolute error of 0.80 min, indicating high RT prediction accuracy. Nontargeted metabolomic data from the NIST SRM 1950-Metabolites in frozen human plasma were analyzed using the developed RT model and in silico MS/MS prediction, resulting in a successful structural estimation of 216 polar metabolites, in addition to the 62 identified based on standards. The proposed model can help accelerate the structural annotation of unknown hydrophilic metabolites, which is a key issue in metabolomic research.


Subject(s)
Metabolome , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Metabolomics/methods , Anions , Hydrophobic and Hydrophilic Interactions
12.
Sci Immunol ; 9(91): eade6924, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38277465

ABSTRACT

Mucosal-associated invariant T (MAIT) cells are innate-like T cells that recognize bacterial riboflavin-based metabolites as activating antigens. Although MAIT cells are found in tissues, it is unknown whether any host tissue-derived antigens exist. Here, we report that a sulfated bile acid, cholic acid 7-sulfate (CA7S), binds the nonclassical MHC class I protein MR1 and is recognized by MAIT cells. CA7S is a host-derived metabolite whose levels were reduced by more than 98% in germ-free mice. Deletion of the sulfotransferase 2a family of enzymes (Sult2a1-8) responsible for CA7S synthesis reduced the number of thymic MAIT cells in mice. Moreover, recognition of CA7S induced MAIT cell survival and the expression of a homeostatic gene signature. By contrast, recognition of a previously described foreign antigen, 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-RU), drove MAIT cell proliferation and the expression of inflammatory genes. Thus, CA7S is an endogenous antigen for MAIT cells, which promotes their development and function.


Subject(s)
Mucosal-Associated Invariant T Cells , Animals , Mice , Bile Acids and Salts , Ligands , Sulfates , Minor Histocompatibility Antigens/metabolism , Antigens
13.
J Lipid Res ; 65(1): 100492, 2024 01.
Article in English | MEDLINE | ID: mdl-38135255

ABSTRACT

Quantitative information on blood metabolites can be used in developing advanced medical strategies such as early detection and prevention of disease. Monitoring bioactive lipids such as steroids, bile acids, and PUFA metabolites could be a valuable indicator of health status. However, a method for simultaneously measuring these bioactive lipids has not yet been developed. Here, we report a LC/MS/MS method that can simultaneously measure 144 bioactive lipids, including steroids, bile acids, and PUFA metabolites, from human plasma, and a sample preparation method for these targets. Protein removal by methanol precipitation and purification of bioactive lipids by solid-phase extraction improved the recovery of the targeted compounds in human plasma samples, demonstrating the importance of sample preparation methods for a wide range of bioactive lipid analyses. Using the developed method, we studied the plasma from healthy human volunteers and confirmed the presence of bioactive lipid molecules associated with sex differences and circadian rhythms. The developed method of bioactive lipid analysis can be applied to health monitoring and disease biomarker discovery in precision medicine.


Subject(s)
Steroids , Tandem Mass Spectrometry , Humans , Female , Male , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Bile Acids and Salts , Lipids
14.
Anal Bioanal Chem ; 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38135762

ABSTRACT

C-type lectin receptors (CLRs), which are pattern recognition receptors responsible for triggering innate immune responses, recognize damaged self-components and immunostimulatory lipids from pathogenic bacteria; however, several of their ligands remain unknown. Here, we propose a new analytical platform combining liquid chromatography-high-resolution tandem mass spectrometry with microfractionation capability (LC-FRC-HRMS/MS) and a reporter cell assay for sensitive activity measurements to develop an efficient methodology for searching for lipid ligands of CLR from microbial trace samples (crude cell extracts of approximately 5 mg dry cell/mL). We also developed an in-house lipidomic library containing accurate mass and fragmentation patterns of more than 10,000 lipid molecules predicted in silico for 90 lipid subclasses and 35 acyl side chain fatty acids. Using the developed LC-FRC-HRMS/MS system, the lipid extracts of Helicobacter pylori were separated and fractionated, and HRMS and HRMS/MS spectra were obtained simultaneously. The fractionated lipid extract samples in 96-well plates were thereafter subjected to reporter cell assays using nuclear factor of activated T cells (NFAT)-green fluorescent protein (GFP) reporter cells expressing mouse or human macrophage-inducible C-type lectin (Mincle). A total of 102 lipid molecules from all fractions were annotated using an in-house lipidomic library. Furthermore, a fraction that exhibited significant activity in the NFAT-GFP reporter cell assay contained α-cholesteryl glucoside, a type of glycolipid, which was successfully identified as a lipid ligand molecule for Mincle. Our analytical platform has the potential to be a useful tool for efficient discovery of lipid ligands for immunoreceptors.

15.
Anal Sci Adv ; 2(1-2): 47-67, 2021 Feb.
Article in English | MEDLINE | ID: mdl-38715740

ABSTRACT

The packed column supercritical fluid chromatography has risen as a promising alternative separation technique to the conventional liquid chromatography and gas chromatography. Although the packed column supercritical fluid chromatography has many advantages compared to other chromatographic techniques, its separation mechanism is not fully understood due to the complex combination effects of many chromatographic parameters on separation quality and the lacking of global strategies for studying separation mechanisms. This review aims to provide recent information regarding the chromatographic behaviors and the effects of the parameters on the separation, discuss the results, and point out the remaining bottlenecks in the packed column supercritical fluid chromatography retention mechanism studies.

SELECTION OF CITATIONS
SEARCH DETAIL