Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Mater Today Bio ; 25: 100949, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38298559

ABSTRACT

Tissue-engineered skin substitutes are promising tools to cover large and deep skin defects. However, the lack of a synergic and fast regeneration of the vascular network, nerves, and skin appendages limits complete skin healing and impairs functional recovery. It has been highlighted that an ideal skin substitute should mimic the structure of the native tissue to enhance clinical effectiveness. Here, we produced a pre-vascularized dermis (PVD) comprised of fibroblasts embedded in their own extracellular matrix (ECM) and a capillary-like network. Upon implantation in a mouse full-thickness skin defect model, we observed a very early innervation of the graft in 2 weeks. In addition, mouse capillaries and complete epithelialization were detectable as early as 1 week after implantation and, skin appendages developed in 2 weeks. These anatomical features underlie the interaction with the skin nerves, thus providing a further cue for reinnervation guidance. Further, the graft displays mechanical properties, collagen density, and assembly features very similar to the host tissue. Taken together our data show that the pre-existing ECM components of the PVD, physiologically organized and assembled similarly to the native tissue, support a rapid regeneration of dermal tissue. Therefore, our results suggest a promising potential for PVD in skin regeneration.

2.
Cells ; 12(8)2023 04 20.
Article in English | MEDLINE | ID: mdl-37190110

ABSTRACT

Tissue engineering bone via endochondral ossification requires the generation of a cartilage template which undergoes vascularisation and remodelling. While this is a promising route for bone repair, achieving effective cartilage vascularisation remains a challenge. Here, we investigated how mineralisation of tissue-engineered cartilage affects its pro-angiogenic potential. To generate in vitro mineralised cartilage, human mesenchymal stromal cell (hMSC)-derived chondrogenic pellets were treated with ß-glycerophosphate (BGP). After optimising this approach, we characterised the changes in matrix components and pro-angiogenic factors by gene expression analysis, histology and ELISA. Human umbilical vein endothelial cells (HUVECs) were exposed to pellet-derived conditioned media, and migration, proliferation and tube formation were assessed. We established a reliable strategy to induce in vitro cartilage mineralisation, whereby hMSC pellets are chondrogenically primed with TGF-ß for 2 weeks and BGP is added from week 2 of culture. Cartilage mineralisation determines loss of glycosaminoglycans, reduced expression but not protein abundance of collagen II and X, and decreased VEGFA production. Finally, the conditioned medium from mineralised pellets showed a reduced ability to stimulate endothelial cell migration, proliferation and tube formation. The pro-angiogenic potential of transient cartilage is thus stage-dependent, and this aspect must be carefully considered in the design of bone tissue engineering strategies.


Subject(s)
Cartilage , Tissue Engineering , Humans , Tissue Engineering/methods , Cartilage/metabolism , Calcification, Physiologic , Human Umbilical Vein Endothelial Cells , Cell Proliferation
3.
NPJ Regen Med ; 8(1): 15, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36914692

ABSTRACT

Vascular endothelial growth factor-A (VEGF) physiologically regulates both angiogenesis and osteogenesis, but its application in bone tissue engineering led to contradictory outcomes. A poorly understood aspect is how VEGF dose impacts the coordination between these two processes. Taking advantage of a unique and highly tunable platform, here we dissected the effects of VEGF dose over a 1,000-fold range in the context of tissue-engineered osteogenic grafts. We found that osteo-angiogenic coupling is exquisitely dependent on VEGF dose and that only a tightly defined dose range could stimulate both vascular invasion and osteogenic commitment of progenitors, with significant improvement in bone formation. Further, VEGF dose regulated Notch1 activation and the induction of a specific pro-osteogenic endothelial phenotype, independently of the promotion of vascular invasion. Therefore, in a therapeutic perspective, fine-tuning of VEGF dose in the signaling microenvironment is key to ensure physiological coupling of accelerated vascular invasion and improved bone formation.

4.
J Tissue Eng ; 13: 20417314221119615, 2022.
Article in English | MEDLINE | ID: mdl-36093431

ABSTRACT

Chronic wounds in type-2 diabetic patients present areas of severe local skin ischemia despite mostly normal blood flow in deeper large arteries. Therefore, restoration of blood perfusion requires the opening of arterial connections from the deep vessels to the superficial skin layer, that is, arteriogenesis. Arteriogenesis is regulated differently from microvascular angiogenesis and is optimally stimulated by high doses of Vascular Endothelial Growth Factor-A (VEGF) together with Platelet-Derived Growth Factor-BB (PDGF-BB). Here we found that fibrin hydrogels decorated with engineered versions of VEGF and PDGF-BB proteins, to ensure protection from degradation and controlled delivery, efficiently accelerated wound closure in diabetic and obese db/db mice, promoting robust microvascular growth and a marked increase in feeding arterioles. Notably, targeting the arteriogenic factors to the intact arterio-venous networks in the dermis around the wound was more effective than the routine treatment of the inflamed wound bed. This approach is readily translatable to a clinical setting.

5.
Curr Opin Biotechnol ; 76: 102750, 2022 08.
Article in English | MEDLINE | ID: mdl-35841865

ABSTRACT

In recent years it has been increasingly appreciated that blood vessels are not simply suppliers of nutrients and oxygen, but actually play an exquisite regulatory role in bone development and repair. A specialized kind of endothelium, named type H because of its high expression of CD31 and Endomucin, constitutes anatomically defined vessels in proximity of the epiphyseal growth plate. Type H endothelium regulates the proliferation and differentiation of both osteoblasts and osteoclasts through the secretion of angiocrine signals and is a hub for the bidirectional molecular crosstalk between the different cell populations of the osteogenic microenvironment. Type H vessels are a key target for current translational approaches aiming at coupling angiogenesis and osteogenesis for bone repair. Open questions remain about their presence and features in notstereotyped tissues, like engineered osteogenic grafts, and the opportunities for their clinical stimulation by pharmacological treatments.


Subject(s)
Bone Regeneration , Osteogenesis , Bone Regeneration/physiology , Cell Differentiation , Osteogenesis/physiology , Signal Transduction
6.
Acta Biomater ; 149: 111-125, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35835287

ABSTRACT

Rapid vascularization of clinical-size bone grafts is an unsolved challenge in regenerative medicine. Vascular endothelial growth factor-A (VEGF) is the master regulator of angiogenesis. Its over-expression by genetically modified human osteoprogenitors has been previously evaluated to drive vascularization in osteogenic grafts, but has been observed to cause paradoxical bone loss through excessive osteoclast recruitment. However, during bone development angiogenesis and osteogenesis are physiologically coupled by VEGF expression. Here we investigated whether the mode of VEGF delivery may be a key to recapitulate its physiological function. VEGF activity requires binding to the extracellular matrix, and heterogeneous levels of expression lead to localized microenvironments of excessive dose. Therefore we hypothesized that a homogeneous distribution of matrix-associated factor in the microenvironment may enable efficient coupling of angiogenesis and bone formation. This was achieved by decorating fibrin matrices with a cross-linkable engineered version of VEGF (TG-VEGF) that is released only by enzymatic cleavage by invading cells. In ectopic grafts, both TG-VEGF and VEGF-expressing progenitors similarly improved vascularization within the first week, but efficient bone formation was possible only in the factor-decorated matrices, whereas heterogenous, cell-based VEGF expression caused significant bone loss. In critical-size orthotopic calvaria defects, TG-VEGF effectively improved early vascular invasion, osteoprogenitor survival and differentiation, as well as bone repair compared to both controls and VEGF-expressing progenitors. In conclusion, homogenous distribution of matrix-associated VEGF protein preserves the physiological coupling of angiogenesis and osteogenesis, providing an attractive and clinically applicable strategy to engineer vascularized bone. STATEMENT OF SIGNIFICANCE: The therapeutic regeneration of vascularized bone is an unsolved challenge in regenerative medicine. Stimulation of blood vessel growth by over-expression of VEGF has been associated with paradoxical bone loss, whereas angiogenesis and osteogenesis are physiologically coupled by VEGF during development. Here we found that controlling the distribution of VEGF dose in an osteogenic graft is key to recapitulate its physiological function. In fact, homogeneous decoration of fibrin matrices with engineered VEGF could improve both vascularization and bone formation in orthotopic critical-size defects, dispensing with the need for combined osteogenic factor delivery. VEGF-decorated fibrin matrices provide a readily translatable platform for engineering a controlled microenvironment for bone regeneration.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Bone Regeneration , Fibrin/metabolism , Fibrin/pharmacology , Humans , Neovascularization, Pathologic/metabolism , Neovascularization, Physiologic , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/pharmacology
7.
Cell Tissue Res ; 387(3): 451-460, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35175429

ABSTRACT

Therapeutic angiogenesis aims at promoting the growth of blood vessels to restore perfusion in ischemic tissues or aid tissue regeneration. Vascular endothelial growth factor (VEGF) is the master regulator of angiogenesis in development, repair, and disease. However, exploiting VEGF for therapeutic purposes has been challenging and needs to take into account some key aspects of VEGF biology. In particular, the spatial localization of angiogenic signals within the extracellular matrix is crucial for physiological assembly and function of new blood vessels. Fibrin is the provisional matrix that is universally deposited immediately after injury and supports the initial steps of tissue regeneration. It provides therefore several ideal features as a substrate to promote therapeutic vascularization, especially through its ability to present growth factors in their physiological matrix-bound state and to modulate their availability for signaling. Here, we provide an overview of fibrin uses as a tissue-engineering scaffold material and as a tunable platform to finely control dose and duration of delivery of recombinant factors in therapeutic angiogenesis. However, in some cases, fibrin has also been associated with undesirable outcomes, namely the promotion of fibrosis and scar formation that actually prevent physiological tissue regeneration. Understanding the mechanisms that tip the balance between the pro- and anti-regenerative functions of fibrin will be the key to fully exploit its therapeutic potential.


Subject(s)
Fibrin , Vascular Endothelial Growth Factor A , Humans , Neovascularization, Pathologic/drug therapy , Neovascularization, Physiologic/physiology , Tissue Scaffolds , Vascular Endothelial Growth Factor A/metabolism
8.
Front Bioeng Biotechnol ; 9: 688467, 2021.
Article in English | MEDLINE | ID: mdl-34277588

ABSTRACT

Non-healing ulcers are a serious complication of diabetes mellitus and a major unmet medical need. A major cause for the lack of healing is the impairment of spontaneous vascularization in the skin, despite mostly normal blood flow in deeper large vessels. Therefore, pro-angiogenic treatments are needed to increase therapeutic perfusion by recruiting new arterial connections (therapeutic arteriogenesis). Vascular endothelial growth factor (VEGF) is the master regulator of angiogenesis in physiology and disease, but exploitation of its therapeutic potential requires careful control of its dose distribution in tissue. Co-delivery of platelet derived growth factor-BB (PDGF-BB) has been shown to expand the therapeutic window of VEGF and also improve associated arteriogenesis. We used a highly controlled protein delivery system, based on a clinically applicable fibrin-based platform, to investigate the angiogenic and arteriogenic potential of engineered versions (TG-) of VEGF and PDGF-BB proteins in the skin of diabetic and obese db/db mice. Intradermal delivery of therapeutically relevant doses of TG-VEGF and TG-PDGF-BB induced robust growth of new microvascular networks with similar efficacy as in normal littermate control mice. Further, TG-PDGF-BB prevented the formation of aberrant vascular enlargements by high TG-VEGF levels. As fibrin was degraded after the first week, the induced angiogenesis mostly regressed by 4 weeks, but it promoted effective arteriogenesis in the dermal layer. Therefore, controlled co-delivery of TG-VEGF and TG-PDGF-BB recombinant proteins is effective to induce angiogenesis and arteriogenesis in diabetic mouse skin and should be further investigated to promote diabetic wound healing.

9.
EMBO Mol Med ; 13(4): e13162, 2021 04 09.
Article in English | MEDLINE | ID: mdl-33751828

ABSTRACT

Metastasis is the main cause of deaths related to solid cancers. Active transcriptional programmes are known to regulate the metastatic cascade but the molecular determinants of metastatic colonization remain elusive. Using an inducible piggyBac (PB) transposon mutagenesis screen, we have shown that overexpression of the transcription factor nuclear factor IB (NFIB) alone is sufficient to enhance primary mammary tumour growth and lung metastatic colonization. Mechanistically and functionally, NFIB directly increases expression of the oxidoreductase ERO1A, which enhances HIF1α-VEGFA-mediated angiogenesis and colonization, the last and fatal step of the metastatic cascade. NFIB is thus clinically relevant: it is preferentially expressed in the poor-prognostic group of basal-like breast cancers, and high expression of the NFIB/ERO1A/VEGFA pathway correlates with reduced breast cancer patient survival.


Subject(s)
Breast Neoplasms , Breast Neoplasms/genetics , Female , Humans , NFI Transcription Factors , Neovascularization, Pathologic , Oxidoreductases
10.
Biomaterials ; 269: 120628, 2021 02.
Article in English | MEDLINE | ID: mdl-33412374

ABSTRACT

The maintenance of a healthy vascular system is essential to ensure the proper function of all organs of the human body. While macrovessels have the main role of blood transportation from the heart to all tissues, microvessels, in particular capillaries, are responsible for maintaining tissues' functionality by providing oxygen, nutrients and waste exchanges. Occlusion of blood vessels due to atherosclerotic plaque accumulation remains the leading cause of mortality across the world. Autologous vein and artery grafts bypassing are the current gold standard surgical procedures to substitute primarily obstructed vascular structures. Ischemic scenarios that condition blood supply in downstream tissues may arise from blockage phenomena, as well as from other disease or events leading to trauma. The (i) great demand for new vascular substitutes, arising from both the limited availability of healthy autologous vessels, as well as the shortcomings associated with small-diameter synthetic vascular grafts, and (ii) the challenging induction of the formation of adequate and stable microvasculature are current driving forces for the growing interest in the development of bioinspired strategies to ensure the proper function of vasculature in all its dimensional scales. Here, a critical review of well-established technologies and recent biotechnological advances to substitute or regenerate the vascular system is provided.


Subject(s)
Microvessels , Regeneration , Heart , Humans , Prostheses and Implants
11.
Cell Rep ; 32(10): 108105, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32905777

ABSTRACT

Circulating tumor cells (CTCs) are shed from solid cancers in the form of single or clustered cells, and the latter display an extraordinary ability to initiate metastasis. Yet, the biological phenomena that trigger the shedding of CTC clusters from a primary cancerous lesion are poorly understood. Here, when dynamically labeling breast cancer cells along cancer progression, we observe that the majority of CTC clusters are undergoing hypoxia, while single CTCs are largely normoxic. Strikingly, we find that vascular endothelial growth factor (VEGF) targeting leads to primary tumor shrinkage, but it increases intra-tumor hypoxia, resulting in a higher CTC cluster shedding rate and metastasis formation. Conversely, pro-angiogenic treatment increases primary tumor size, yet it dramatically suppresses the formation of CTC clusters and metastasis. Thus, intra-tumor hypoxia leads to the formation of clustered CTCs with high metastatic ability, and a pro-angiogenic therapy suppresses metastasis formation through prevention of CTC cluster generation.


Subject(s)
Cell Hypoxia/immunology , Neoplastic Cells, Circulating/immunology , Proteomics/methods , Animals , Female , Humans , Male , Mice
12.
J Tissue Eng Regen Med ; 14(10): 1513-1523, 2020 10.
Article in English | MEDLINE | ID: mdl-32841501

ABSTRACT

Therapeutic angiogenesis is the delivery of factors to promote vascular growth and holds promise for the treatment of ischemic heart conditions. Recombinant protein delivery to the myocardium by factor-decorated fibrin matrices is an attractive approach, thanks to the ability to precisely control both dose and duration of the treatment, the use of a clinically approved material like fibrin, and the avoidance of genetic modification. Here, we investigated the feasibility of inducing therapeutic angiogenesis in the rat myocardium by a state-of-the-art fibrin-based delivery platform that we previously optimized. Engineered versions of murine vascular endothelial growth factor A (VEGF164 ) and platelet-derived growth factor BB (PDGF-BB) were fused with an octapeptide substrate of the transglutaminase coagulation factor fXIIIa (TG) to allow their covalent cross-linking into fibrin hydrogels and release by enzymatic cleavage. Hydrogels containing either 100 µg/mL TG-VEGF alone or in combination with 10 µg/mL TG-PDGF-BB or no factor were injected into rat myocardium. Surprisingly, vascular density was severely reduced in all conditions, both in and around the injection site, where large fibrotic scars were formed. Scar formation was not due to the presence of growth factors, adaptive immunity to human proteins, damage from injection, nor to mechanical trauma from the hydrogel stiffness or volume. Rather scar was induced directly by fibrin and persisted despite hydrogel degradation within 1 week. These results caution against the suitability of fibrin-based platforms for myocardial growth factor delivery, despite their efficacy in other tissues, like skeletal muscle. The underlying molecular mechanisms must be further investigated in order to identify rational targets to prevent this serious side effect.


Subject(s)
Cicatrix/pathology , Fibrin/adverse effects , Heart/drug effects , Hydrogels/adverse effects , Neovascularization, Physiologic , Adaptive Immunity , Angiogenesis Inducing Agents/metabolism , Animals , Biomechanical Phenomena , Humans , Injections , Myocardial Infarction/pathology , Rats, Sprague-Dawley , Vascular Endothelial Growth Factor A/metabolism
13.
Article in English | MEDLINE | ID: mdl-32714920

ABSTRACT

The first choice for reconstruction of clinical-size bone defects consists of autologous bone flaps, which often lack the required mechanical strength and cause significant donor-site morbidity. We have previously developed biological substitutes in a rabbit model by combining bone tissue engineering and flap pre-fabrication. However, spontaneous vascularization was insufficient to ensure progenitor survival in the core of the constructs. Here, we hypothesized that increased angiogenic stimulation within constructs by exogenous VEGF can significantly accelerate early vascularization and tissue in-growth. Bone marrow stromal cells from NZW rabbits (rBMSC) were transduced with a retroviral vector to express rabbit VEGF linked to a truncated version of rabbit CD4 as a cell-surface marker. Autologous cells were seeded in clinical-size 5.5 cm3 HA scaffolds wrapped in a panniculus carnosus flap to provide an ample vascular supply, and implanted ectopically. Constructs seeded with VEGF-expressing rBMSC showed significantly increased progenitor survivival, depth of tissue ingrowth and amount of mineralized tissue. Contrast-enhanced MRI after 1 week in vivo showed significantly improved tissue perfusion in the inner layer of the grafts compared to controls. Interestingly, grafts containing VEGF-expressing rBMSC displayed a hierarchically organized functional vascular tree, composed of dense capillary networks in the inner layers connected to large-caliber feeding vessels entering the constructs at the periphery. These data constitute proof of principle that providing sustained VEGF signaling, independently of cells experiencing hypoxia, is effective to drive rapid vascularization and increase early perfusion in clinical-size osteogenic grafts, leading to improved tissue formation deeper in the constructs.

14.
Cell Metab ; 31(6): 1136-1153.e7, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32492393

ABSTRACT

Endothelial cell (EC)-derived signals contribute to organ regeneration, but angiocrine metabolic communication is not described. We found that EC-specific loss of the glycolytic regulator pfkfb3 reduced ischemic hindlimb revascularization and impaired muscle regeneration. This was caused by the reduced ability of macrophages to adopt a proangiogenic and proregenerative M2-like phenotype. Mechanistically, loss of pfkfb3 reduced lactate secretion by ECs and lowered lactate levels in the ischemic muscle. Addition of lactate to pfkfb3-deficient ECs restored M2-like polarization in an MCT1-dependent fashion. Lactate shuttling by ECs enabled macrophages to promote proliferation and fusion of muscle progenitors. Moreover, VEGF production by lactate-polarized macrophages was increased, resulting in a positive feedback loop that further stimulated angiogenesis. Finally, increasing lactate levels during ischemia rescued macrophage polarization and improved muscle reperfusion and regeneration, whereas macrophage-specific mct1 deletion prevented M2-like polarization. In summary, ECs exploit glycolysis for angiocrine lactate shuttling to steer muscle regeneration from ischemia.


Subject(s)
Endothelial Cells/chemistry , Ischemia/metabolism , Lactates/pharmacology , Macrophages/drug effects , Muscle, Skeletal/drug effects , Animals , Cells, Cultured , Ischemia/pathology , Macrophage Activation/drug effects , Macrophages/metabolism , Mice , Mice, Knockout , Mice, Transgenic , Muscle, Skeletal/metabolism
15.
Stem Cells Transl Med ; 9(4): 433-444, 2020 04.
Article in English | MEDLINE | ID: mdl-31922362

ABSTRACT

Therapeutic angiogenesis, that is, the generation of new vessels by delivery of specific factors, is required both for rapid vascularization of tissue-engineered constructs and to treat ischemic conditions. Vascular endothelial growth factor (VEGF) is the master regulator of angiogenesis. However, uncontrolled expression can lead to aberrant vascular growth and vascular tumors (angiomas). Major challenges to fully exploit VEGF potency for therapy include the need to precisely control in vivo distribution of growth factor dose and duration of expression. In fact, the therapeutic window of VEGF delivery depends on its amount in the microenvironment around each producing cell rather than on the total dose, since VEGF remains tightly bound to extracellular matrix (ECM). On the other hand, short-term expression of less than about 4 weeks leads to unstable vessels, which promptly regress following cessation of the angiogenic stimulus. Here, we will briefly overview some key aspects of the biology of VEGF and angiogenesis and discuss their therapeutic implications with a particular focus on approaches using gene therapy, genetically modified progenitors, and ECM engineering with recombinant factors. Lastly, we will present recent insights into the mechanisms that regulate vessel stabilization and the switch between normal and aberrant vascular growth after VEGF delivery, to identify novel molecular targets that may improve both safety and efficacy of therapeutic angiogenesis.


Subject(s)
Neovascularization, Physiologic , Regenerative Medicine , Animals , Gene Transfer Techniques , Humans , Monocytes/cytology , Pericytes/cytology , Protein Engineering
16.
J Cereb Blood Flow Metab ; 40(2): 404-419, 2020 02.
Article in English | MEDLINE | ID: mdl-30621518

ABSTRACT

The myoblast-mediated delivery of angiogenic genes represents a cell-based approach for targeted induction of therapeutic collateralization. Here, we tested the superiority of myoblast-mediated co-delivery of vascular endothelial growth factor-A (VEGF) together with platelet-derived growth factor-BB (PDGF-BB) on transpial collateralization of an indirect encephalomyosynangiosis (EMS) in a model of chronic cerebral ischemia. Mouse myoblasts expressing a reporter gene alone (empty vector), VEGF, PDGF-BB or VEGF and PDGF-BB through a single bi-cistronic vector (VIP) were implanted into the temporalis muscle of an EMS following permanent ipsilateral internal carotid artery occlusion in adult, male C57BL/6N mice. Over 84 days, myoblast engraftment and gene product expression, hemodynamic impairment, transpial collateralization, angiogenesis, pericyte recruitment and post-ischemic neuroprotection were assessed. By day 42, animals that received PDGF-BB in combination with VEGF (VIP) showed superior hemodynamic recovery, EMS collateralization and ischemic protection with improved pericyte recruitment around the parenchymal vessels and EMS collaterals. Also, supplementation of PDGF-BB resulted in a striking astrocytic activation with intrinsic VEGF mobilization in the cortex below the EMS. Our findings suggest that EMS surgery together with myoblast-mediated co-delivery of VEGF/PDGF-BB may have the potential to serve as a novel treatment strategy for augmentation of collateral flow in the chronically hypoperfused brain.


Subject(s)
Becaplermin , Brain Ischemia , Cerebral Cortex , Cerebrovascular Circulation , Genetic Vectors , Myoblasts , Vascular Endothelial Growth Factor A , Animals , Becaplermin/biosynthesis , Becaplermin/genetics , Brain Ischemia/genetics , Brain Ischemia/metabolism , Brain Ischemia/physiopathology , Brain Ischemia/therapy , Cerebral Cortex/blood supply , Cerebral Cortex/metabolism , Chronic Disease , Male , Mice , Muscle, Skeletal/metabolism , Myoblasts/metabolism , Myoblasts/transplantation , Vascular Endothelial Growth Factor A/biosynthesis , Vascular Endothelial Growth Factor A/genetics
17.
Adv Mater ; 31(21): e1808050, 2019 May.
Article in English | MEDLINE | ID: mdl-30924979

ABSTRACT

Vascularization is a critical step in the restoration of cellular homeostasis. Several strategies including localized growth factor delivery, endothelial progenitor cells, genetically engineered cells, gene therapy, and prevascularized implants have been explored to promote revascularization. But, long-term stabilization of newly induced vessels remains a challenge. It has been shown that fibroblasts and mesenchymal stem cells can stabilize newly induced vessels. However, whether an injected biomaterial alone can serve as an instructive environment for angiogenesis remains to be elucidated. It is reported here that appropriate vascular branching, and long-term stabilization can be promoted simply by implanting a hydrogel with stiffness matching that of fibrin clot. A unique subpopulation of circulating CD11b+ myeloid and CD11b+ /CD115+ monocytes that express the stretch activated cation channel Piezo-1, which is enriched prominently in the clot-like hydrogel, is identified. These findings offer evidence for a mechanobiology paradigm in angiogenesis involving an interplay between mechanosensitive circulating cells and mechanics of tissue microenvironment.


Subject(s)
CD11b Antigen/metabolism , Cellular Microenvironment , Hydrogels , Ion Channels/metabolism , Mechanical Phenomena , Microvessels/cytology , Monocytes/metabolism , Receptor, Macrophage Colony-Stimulating Factor/metabolism , Sepharose/chemistry , Animals , Cell Count , Cell Proliferation/drug effects , Endothelial Cells/metabolism , Leukocytes, Mononuclear/metabolism , Mice, SCID , Microvessels/metabolism , Neovascularization, Physiologic , Signal Transduction
18.
Swiss Med Wkly ; 149: w20011, 2019 01 14.
Article in English | MEDLINE | ID: mdl-30685867

ABSTRACT

Despite major advances in medical, catheter-based or surgical treatment, cardiovascular diseases such as peripheral artery disease and coronary artery disease still cause significant morbidity and mortality. Furthermore, many patients do not qualify for catheter-based treatment or bypass surgery because of advanced disease or surgical risk. There is therefore an urgent need for novel treatment strategies. Therapeutic angiogenesis aims to restore blood flow to ischaemic tissue by stimulating the growth of new blood vessels through the local delivery of angiogenic factors, and may thus be an attractive treatment alternative for these patients. Angiogenesis is a complex process and the growth of normal, stable and functional vasculature depends on the coordinated interplay of different cell types and growth factors. Vascular endothelial growth factor-A (VEGF) is the fundamental regulator of vascular growth and the key target of therapeutic angiogenesis approaches. However, first-generation clinical trials of VEGF gene therapy have been disappointing, and a clear clinical benefit has yet to be established. In particular, VEGF delivery (a) appears to have a very limited therapeutic window in vivo: low doses are safe but mostly inefficient, whereas higher doses become rapidly unsafe; and (b) requires a sustained expression in vivo of at least about four weeks to achieve stable vessels that persist after cessation of the angiogenic stimulus. Here we will review the current understanding of how VEGF induces the growth of normal or pathological blood vessels, what limitations for the controlled induction of safe and efficient angiogenesis are intrinsically linked to the biological properties of VEGF, and how this knowledge can guide the design of more effective strategies for therapeutic angiogenesis.


Subject(s)
Ischemia/therapy , Neovascularization, Physiologic , Vascular Endothelial Growth Factor A/metabolism , Angiogenesis Inducing Agents/administration & dosage , Animals , Becaplermin/administration & dosage , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...