Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
Add more filters











Publication year range
1.
Front Cell Dev Biol ; 12: 1444706, 2024.
Article in English | MEDLINE | ID: mdl-39268087

ABSTRACT

Yaks (Bos grunniens) exhibit exceptional adaptation to the challenging high-altitude environment of the Qinghai-Tibetan plateau, making them the sole bovine species capable of thriving in such exreme conditions. Investigating the cellular and molecular characteristics of yak ovaries across different reproductive states is crucial for gaining insight into their ovarian functions. Herein, the cellular atlases of yak ovaries in different reproductive states were depicted by single-cell RNA-sequencing (scRNA-seq). The cellular atlases of the ovaries were established by identifying specific gene expression patterns of various cell types, including granulosa cells, theca cells, stromal cells, smooth muscle cells, endothelial cells, glial cell, macrophages, natural killer cells, and proliferating cells. The cellular compositions of the ovaries vary among different reproductive states. Furthermore, the granulosa cells comprise six cell subtypes, while theca cells consist of eight cell subtypes. The granulosa cells and theca cells exhibit distinct biological functions throughout different reproductive states. The two cell types were aligned along their respective pseudotime trajectories. Moreover, a cell-to-cell communication network was constructed among distinct cell types within the ovary, spanning the three reproductive states. Notably, during the estrus period, the granulosa cells demonstrated more prominent interactions with other cell types compared to the remaining reproductive states.

2.
Food Chem X ; 23: 101715, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39220419

ABSTRACT

Milk lipids greatly affect the volatile flavor of milk, and the relationship between lipids and volatile flavor in yak milk was explored in this study. The volatile flavor compounds (VFCs), lipids profile, fatty acids in yak ordinary milk and colostrum were detected with HP/SPME-GC-MS, the semiquantitative lipidomics based on LC-MS/MS, GC-MS, respectively. The VFCs differences in yak milk were closely related to 1-((1 s,3ar,4r,7 s,7as)-4-hydroxy-7-isopropyl-4-methyloctahloctahydro-1h-inden-1-Yl)-ethanone,2,6,6-trimethyl-2,4-cycloheptadien-1-one, pentanal, 2-phenylethyl propionate, octanoic acid methyl ester, diphosphoric acid diisooctyl ester, (Z)-3,4,4-trimethyl-5-oxo-2-hexenoic acid and acetic acid. The volatile flavor in yak milk was well correlated with milk lipids, and TG(4:0_12:3_18:1), TG(6:0_8:0_18:1), TG(4:0_12:3_18:1), TG(12:0_18:2_18:3) and TG(16:0e_18:1_22:5) were the crucial lipid molecules affecting volatile flavor. The degeneration of above lipids by hydrolysis produced some fatty acids and alcohol, then these compounds were further derived into other VFCs especially above crucial 8 molecules. This study provided a theoretical basis for improving the volatile flavor by controlling lipids in yak milk.

3.
Anim Biotechnol ; 35(1): 2391520, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39222080

ABSTRACT

MicroRNAs (miRNAs) were identified to be involved in various biological functions by regulating the degradation or suppressing the translation of their downstream target genes. Recent studies have identified miR-29a play a key role in functions of mammal cell differentiation, proliferation, apoptosis, and signal transduction. However, the underlying functions for miR-29a in jejunal epithelial cells biological function still to be investigated. In order to explore the yak jejunal epithelial cells proliferation and barrier dysfunction with over expression of miR-29a gene, three 0-day-old Pamir male yaks were randomly selected and slaughtered in present study, and the jejunal epithelial cells were isolated and cultured to determine yak jejunal epithelial cells proliferation and protein composition on differential expression of miR-29a gene in Pamir plateau. Here, we demonstrated that the overexpression of miR-29a gene could inhibit the proliferation of Pamir yaks jejunum epithelial cells, and contribute to the apoptosis of Pamir yaks jejunal epithelial cells with some extent. A total of 133 differentially expressed proteins were identified in different expression of miR-29a groups by label-free Mass Spectrometry (MS), which could be concluded to two predominant themes: cell proliferation and inflammatory response. Interestingly, GPR41, as a bridge protein, was contacted two predominant themes to involved in Pamir Yaks jejunal mechanical barrier PPI network, and the target proteins displayed strong mutual interactions in the complex PPI network. Overall, our study suggested that the over-expression miR-29a inhibited the jejunal epithelial cells proliferation and the expressions of specific proteins, which damaged jejunal barrier function to slow down the intestine structure and function advanced mature development during young livestock period for influence the enhanced performance of production efficiency.


Subject(s)
Apoptosis , Cell Proliferation , Epithelial Cells , Jejunum , MicroRNAs , Animals , Cattle/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Epithelial Cells/physiology , Epithelial Cells/metabolism , Apoptosis/genetics , Apoptosis/physiology , Jejunum/cytology , Jejunum/metabolism , Cell Proliferation/genetics , Male
4.
Genomics ; 116(5): 110933, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39218165

ABSTRACT

Yaks are crucial genetic resources in the Tibetan Plateau and surrounding regions. Throughout the long process of domestication, natural and artificial selection pressures have enabled yaks to demonstrate adaptive characteristics to the environment in terms of physiological structure and genetic molecules, but no systematic cell analysis has been carried out on this phenomenon of yaks. Here, the population structure and genetic diversity of yak were studied by WGRS, and the genes related to yak adaptability were excavated. Combined with scRNA-seq method, the transcription map of yak lung tissue and skin tissue was constructed, which provided a new comprehensive insight into yak adaptability. The analysis of yak population structure showed that there was obvious genetic differentiation between TZ _ yak and other seven yak populations, while there was significant genetic exchange between PL _ yak and SB _ yak at high altitude. WGRS and scRNA-seq analysis revealed that the gene HIF1A related to high altitude adaptation was expressed in various cell types, while EPAS1 was predominantly expressed in epithelial and endothelial cells of yak lung tissue. Endothelial cells play a critical role in hypoxia-adapted VEGF signaling, which correlates closely with the high expression of KDR and VEGFA genes in endothelial cells and monocytes. Furthermore, in the selection signal of High _ yak vs Low _ yak, 19.8 % of the genes overlapped with the genes screened by skin scRNA-seq, including genes related to coat color such as RORA, BNC2, and KIT. Notably, BNC2 is a gene associated with melanin deposition and shows high expression levels in HS cells. Additionally, GRN in melanocytes and SORT1 in IRS play an important role in cell communication between melanocytes and IRS. These findings offer new insights into the natural polymorphism of yaks and provide a valuable reference for future research on high-altitude mammals, and potentially even human genetics.

5.
Int J Mol Sci ; 25(15)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39126002

ABSTRACT

Male reproductive health is largely determined already in the early development of the testis. Although much work has been carried out to study the mechanisms of testicular development and spermatogenesis, there was previously no information on the differences in the protein composition of yak testicles during early development. In this study, the protein profiles in the testicles of 6- (M6), 18- (M18), and 30-month-old (M30) yaks were comparatively analyzed using TMT proteomics. A total of 5521 proteins were identified, with 13, 1295, and 1397 differentially expressed proteins (DEPs) in 30- vs. 18-, 18- vs. 6-, and 30- vs. 6-month-old testes, respectively. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that DEPs were mainly involved in signaling pathways related to testicular development and spermatogenesis, including the MAPK, PI3K-Akt, Wnt, mTOR, TGF-ß, and AMPK signaling pathways. Furthermore, we also identified eight potential proteins (TEX101, PDCL2, SYCP2, SYCP3, COL1A1, COL1A2, ADAM10, and ATF1) that may be related to the testicular development and spermatogenesis of yaks. This study may provide new insights into the molecular mechanisms of the testicular development and spermatogenesis of yaks.


Subject(s)
Proteomics , Spermatogenesis , Testis , Animals , Male , Cattle , Testis/metabolism , Testis/growth & development , Proteomics/methods , Proteome/metabolism , Gene Ontology , Signal Transduction , Protein Interaction Maps
6.
Foods ; 13(16)2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39200454

ABSTRACT

Energy feed can provide animals with balanced nutrition, thereby enhancing their growth performance. This study aimed to evaluate the effects of dietary energy levels on the growth performance, serum metabolites, and meat quality of Jersey cattle-yaks. A total of 24 male Jersey cattle-yaks were randomly divided into three groups. Each group was fed diets with metabolizable energy levels of 8.21 MJ/kg (LE), 9.50 MJ/kg (ME), and 10.65 MJ/kg (HE), respectively. The HE and ME groups showed significantly higher final body weight, average daily gain (ADG), and feed efficiency compared to the LE group (p < 0.05). The glucose (GLU) and total cholesterol (TC) concentrations were significantly increased in the serum of the ME and HE groups (p < 0.05). The low-density lipoprotein cholesterol (LDL-C) and alanine aminotransferase (ALT) levels were significantly higher in the serum of the HE group than in the ME group (p < 0.05). Blood urea nitrogen (BUN) levels exhibited a significant decrease with increasing metabolizable energy levels in the diet (p < 0.05). Increasing dietary energy levels enhances the eye muscle area and intramuscular fat content of Jersey cattle-yaks (p < 0.05), with no effect on pH45 min, pH24 h, and shear force. In the HE group, the levels of heneicosanoic acid (C21:0), palmitoleic acid (C16:1), elaidic acid (C18:1n9t), and eicosadienoic acid (C20:2n6) were notably elevated (p < 0.05) when compared to the LE group. We concluded that a higher dietary energy level enhanced the growth performance and meat quality traits of male Jersey cattle-yaks.

7.
Foods ; 13(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38890842

ABSTRACT

A single-nucleotide polymorphism (SNP) is a genome-level trait that arises from a variation in a single nucleotide, leading to diversity in DNA sequences. SNP screening is commonly used to provide candidate genes for yak breeding efforts. Integrin Subunit Alpha 9 (ITGA9) is an integrin protein. It plays an important role in cell adhesion, signalling, and other processes. The aim of this study was to discuss the association between genetic polymorphisms in the ITGA9 gene and milk quality traits and to identify potential molecular marker loci for yak breeding quality. We genotyped 162 yaks using an Illumina Yak cGPS 7K liquid chip and identified the presence of polymorphisms at nine SNP loci in the ITGA9 gene of yaks. The results showed that the mutant genotypes in the loci g.285,808T>A, g.306,600T>C, and g.315,413C>T were positively correlated with the contents of casein, protein, total solids (TS), and solid nonfat (SNF) in yak milk. In other loci, heterozygous genotypes had a positive correlation with nutrient content in yak milk. Then, two ITGA9 haplotype blocks were constructed based on linkage disequilibrium, which facilitated a more accurate screening of ITGA9 as a candidate gene for yak milk quality improvement. In conclusion, we identified SNPs and haplotype blocks related to yak milk quality traits and provided genetic resources for marker-assisted selection in yak breeding.

8.
Genomics ; 116(4): 110872, 2024 07.
Article in English | MEDLINE | ID: mdl-38849017

ABSTRACT

Cattle-yak is a hybrid offspring resulting from the crossbreeding of yak and cattle, and it exhibits substantial heterosis in production performance. However, male sterility in cattle-yak remains a concern. Reports suggest that noncoding RNAs are involved in the regulation of spermatogenesis. Therefore, in this study, we comprehensively compared testicular transcription profiles among cattle, yak, and cattle-yak. Numerous differentially expressed genes (DEGs), differentially expressed circRNAs (DECs), and differentially expressed miRNAs (DEMs) were identified in the intersection of two comparison groups, namely cattle versus cattle-yak and yak versus cattle-yak, with the number of DEGs, DECs, and DEMs being 4968, 360, and 59, respectively. The DEGs in cattle-yaks, cattle, and yaks were mainly associated with spermatogenesis, male gamete generation, and sexual reproduction. Concurrently, GO and KEGG analyses indicated that DEC host genes and DEM source genes were involved in the regulation of spermatogenesis. The construction of a potential competing endogenous RNA network revealed that some differentially expressed noncoding RNAs may be involved in regulating the expression of genes related to testicular spermatogenesis, including miR-423-5p, miR-449b, miR-34b/c, and miR-15b, as well as previously unreported miR-6123 and miR-1306, along with various miRNA-circRNA interaction pairs. This study serves as a valuable reference for further investigations into the mechanisms underlying male sterility in cattle-yaks.


Subject(s)
Gene Regulatory Networks , MicroRNAs , RNA, Circular , RNA, Messenger , Testis , Cattle/genetics , Cattle/metabolism , Animals , Male , Testis/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Spermatogenesis/genetics , Transcriptome , RNA, Competitive Endogenous
9.
BMC Genomics ; 25(1): 498, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773419

ABSTRACT

BACKGROUND: The hair follicle development process is regulated by sophisticated genes and signaling networks, and the hair grows from the hair follicle. The Tianzhu white yak population exhibits differences in hair length, especially on the forehead and shoulder region. However, the genetic mechanism is still unclear. Isoform sequencing (Iso-seq) technology with advantages in long reads sequencing. Hence, we combined the Iso-seq and RNA-seq methods to investigate the transcript complexity and difference between long-haired yak (LHY) and normal-haired yak (NHY). RESULTS: The hair length measurement result showed a significant difference between LHY and NHY on the forehead and the shoulder (P-value < 0.001). The skin samples from the forehead and the shoulder of LHY and NHY were pooled for isoform sequencing (Iso-seq). We obtained numerous long transcripts, including novel isoforms, long non-coding RNA, alternative splicing events, and alternative polyadenylation events. Combined with RNA-seq data, we performed differential isoforms (DEIs) analysis between LHY and NHY. We found that some hair follicle and skin development-related DEIs, like BMP4, KRT2, IGF2R, and COL1A2 in the forehead skin; BMP1, KRT1, FGF5, COL2A1, and IGFBP5 in the shoulder skin. Enrichment analysis revealed that DEIs in both two comparable groups significantly participated in skin and hair follicle development-related pathways, like ECM-receptor interaction, focal adhesion, and PI3K-Akt signaling pathways. The results indicated that the hair follicle development of Tianzhu white yak may influence the hair length difference. Besides, the protein-protein interaction (PPI) network of DEIs showed COL2A1 and COL3A1 exhibited a high degree of centrality, and these two genes were suggested as potential candidates for the hair length growth of Tianzhu white yak. CONCLUSIONS: The results provided a comprehensive analysis of the transcriptome complexity and identified differential transcripts that enhance our understanding of the molecular mechanisms underlying the variation in hair length growth in Tianzhu white yak.


Subject(s)
Hair , Protein Isoforms , RNA-Seq , Skin , Transcriptome , Animals , Cattle/genetics , Skin/metabolism , Hair/metabolism , Hair/growth & development , Protein Isoforms/genetics , Protein Isoforms/metabolism , Hair Follicle/metabolism , Hair Follicle/growth & development , Gene Expression Profiling , Alternative Splicing , Sequence Analysis, RNA
10.
BMC Genomics ; 25(1): 481, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750421

ABSTRACT

BACKGROUND: There is no consensus as to the origin of the domestic yak (Bos grunniens). Previous studies on yak mitochondria mainly focused on mitochondrial displacement loop (D-loop), a region with low phylogenetic resolution. Here, we analyzed the entire mitochondrial genomes of 509 yaks to obtain greater phylogenetic resolution and a comprehensive picture of geographical diversity. RESULTS: A total of 278 haplotypes were defined in 509 yaks from 21 yak breeds. Among them, 28 haplotypes were shared by different varieties, and 250 haplotypes were unique to specific varieties. The overall haplotype diversity and nucleotide diversity of yak were 0.979 ± 0.0039 and 0.00237 ± 0.00076, respectively. Phylogenetic tree and network analysis showed that yak had three highly differentiated genetic branches with high support rate. The differentiation time of clades I and II were about 0.4328 Ma, and the differentiation time of clades (I and II) and III were 0.5654 Ma. Yushu yak is shared by all haplogroups. Most (94.70%) of the genetic variation occurred within populations, and only 5.30% of the genetic variation occurred between populations. The classification showed that yaks and wild yaks were first clustered together, and yaks were clustered with American bison as a whole. Altitude had the highest impact on the distribution of yaks. CONCLUSIONS: Yaks have high genetic diversity and yak populations have experienced population expansion and lack obvious phylogeographic structure. During the glacial period, yaks had at least three or more glacial refugia.


Subject(s)
Genetic Variation , Genome, Mitochondrial , Haplotypes , Phylogeny , Phylogeography , Animals , Cattle/genetics , Maternal Inheritance , Female , DNA, Mitochondrial/genetics
11.
Int J Biol Macromol ; 271(Pt 1): 132400, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759851

ABSTRACT

Alternative splicing is a prevalent phenomenon in testicular tissues. Due to the low assembly accuracy of short-read RNA sequencing technology in analyzing post-transcriptional regulatory events, full-length (FL) transcript sequencing is highly demanded to accurately determine FL splicing variants. In this study, we performed FL transcriptome sequencing of testicular tissues from 0.5, 1.5, 2.5, and 4-year-old yaks and 4-year-old cattle-yaks using Oxford Nanopore Technologies. The obtained sequencing data were predicted to have 47,185 open reading frames (ORFs), including 26,630 complete ORFs, detected 7645 fusion transcripts, 15,355 alternative splicing events, 25,798 simple sequence repeats, 7628 transcription factors, and 35,503 long non-coding RNAs. A total of 40,038 novel transcripts were obtained from the sequencing data, and the proportion was almost close to the number of known transcripts identified. Structural analysis and functional annotation of these novel transcripts resulted in the successful annotation of 9568 transcripts, with the highest and lowest annotation numbers in the Nr and KOG databases, respectively. Weighted gene co-expression network analysis revealed the key regulatory pathways and hub genes at various stages of yak testicular development. Our findings enhance our comprehension of transcriptome complexity, contribute to genome annotation refinement, and provide foundational data for further investigations into male sterility in cattle-yaks.


Subject(s)
Molecular Sequence Annotation , Testis , Transcriptome , Animals , Male , Cattle , Testis/metabolism , Testis/growth & development , Transcriptome/genetics , Open Reading Frames/genetics , Gene Expression Profiling/methods , Alternative Splicing , RNA, Long Noncoding/genetics , Gene Regulatory Networks , Sequence Analysis, RNA/methods
12.
Anim Biotechnol ; 35(1): 2344213, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38669244

ABSTRACT

Lysozyme like 4 (LYZL4), lysozyme like 6 (LYZL6) and proliferating cell nuclear antigen (PCNA) are implicated in the regulation of testicular function, but there was no research reported available on the expression patterns of LYZL4, LYZL6 and PCNA genes at different developmental stages of yak testes. In this study, we used the qRT-PCR, western blotting and immunohistochemistry estimated the LYZL4, LYZL6 and PCNA gene expression and protein lo-calization at different developmental stages of yak testes. The qPCR results showed that the mRNA expression of LYZL4, LYZL6 and PCNA genes significantly increased with age in the testes of yaks. Western blot results showed that the protein abundance of LYZL4, LYZL6 and PCNA in yak testes was significantly higher after puberty than before puberty. Furthermore, the results of immunohistochemistry indicated that LYZL4, LYZL6 and PCNA may be involved in the regulation of spermatogonia proliferation and Leydig cell function in immature testis. In adult yak testes, LYZL4, LYZL6 and PCNA may involve in the development of round spermatids and primary spermatocytes during testicular development. Our results indicated that LYZL4, LYZL6 and PCNA may be involved in the development of Sertoli cells, Leydig cells and gonocytes in yak testes.


Subject(s)
Proliferating Cell Nuclear Antigen , Testis , Animals , Male , Testis/growth & development , Testis/metabolism , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Cattle/genetics , Cattle/growth & development , Gene Expression Regulation, Developmental , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Aging , Leydig Cells/metabolism
13.
Animals (Basel) ; 14(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38473080

ABSTRACT

Yak meat is nutritionally superior to beef cattle but has a low fat content and is slow-growing. The liver plays a crucial role in lipid metabolism, and in order to determine whether different feeding modes affect lipid metabolism in yaks and how it is regulated, we employed RNA sequencing (RNA-seq) technology to analyze the genome-wide differential gene expression in the liver of yaks maintained under different raising systems. A total of 1663 differentially expressed genes (DEGs) were identified (|log2FC| ≥ 0 and p-value ≤ 0.05), including 698 down-regulated and 965 up-regulated genes. According to gene ontology (GO) and KEGG enrichment analyses, these DEGs were significantly enriched in 13 GO terms and 26 pathways (p < 0.05). Some DEGs were enriched in fatty acid degradation, PPAR, PI3K-Akt, and ECM receptor pathways, which are associated with lipid metabolism. A total of 16 genes are well known to be related to lipid metabolism (e.g., APOA1, FABP1, EHHADH, FADS2, SLC27A5, ACADM, CPT1B, ACOX2, HMGCS2, PLIN5, ACAA1, IGF1, FGFR4, ALDH9A1, ECHS1, LAMA2). A total of 11 of the above genes were significantly enriched in the PPAR signaling pathway. The reliability of the transcriptomic data was verified using qRT-PCR. Our findings provide new insights into the mechanisms regulating yak meat quality. It shows that fattening improves the expression of genes that regulate lipid deposition in yaks and enhances meat quality. This finding will contribute to a better understanding of the various factors that determine yak meat quality and help develop strategies to improve yield and quality.

14.
Int J Biol Macromol ; 262(Pt 1): 129985, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38342263

ABSTRACT

Cattle-yak, which is the hybrid F1 generation of cattle and yak, demonstrates better production performance compared to yak. However, there is limited research on the molecular mechanisms responsible for the muscle development of cattle-yak. To address this knowledge gap, a comprehensive transcriptomic survey of the longissimus dorsi muscle in cattle-yak was conducted. Three transcript types, namely lncRNAs, miRNAs, and circRNAs, along with protein-coding genes were characterized at two developmental stages (6 m, 18 m) of cattle-yak. The results revealed significant enrichment of these transcripts into pathways related to myoblast differentiation and muscle development signaling. Additionally, the study identified the TCONS00024465/circHIPK3-bta-miR-499-ADAMTS6 regulatory network, which may play a crucial role in the muscle development of cattle-yak by combining the transcriptome data of yak and constructing the ceRNA co-expression network. HEK 293 T cells were used to validate that TCONS00024465 and circHIPK3 are located upstream of bta-miR-499, and can competitively bind to bta-miR-499 as ceRNA. The study also verified that ADAMTS6 regulates skeletal muscle development by inhibiting myoblast proliferation, promoting myoblast differentiation, and positively regulating the apoptosis of myoblasts. Taken together, this study provides new insights into the advantages of cattle-yak production performance and offers a molecular basis for further research on muscle development.


Subject(s)
Gene Expression Profiling , MicroRNAs , Animals , Cattle , Humans , HEK293 Cells , MicroRNAs/genetics , Myoblasts/metabolism , Muscle, Skeletal/metabolism
15.
BMC Vet Res ; 20(1): 67, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38395831

ABSTRACT

BACKGROUND: Yaks (Bos grunniens), prized for their ability to thrive in high-altitude environments, are indispensable livestock in the plateau region. Modifying their feeding systems holds significant promise for improving their growth and meat quality. Tenderness, a key determinant of yak meat quality and consumer appeal, is demonstrably influenced by dietary regimen. Indoor feeding regimes have been shown to enhance tenderness by lowering shear stress and optimizing pH values. CircRNAs, well-known modulators of circulatory function, also play a crucial role in skeletal muscle development across various animal species. However, their functional significance in yak skeletal muscle remains largely unexplored. RESULTS: In this study, we identified a total of 5,534 circRNAs within the longissimus dorsi muscle, and we found 51 differentially expressed circRNAs (20 up-regulated and 31 down-regulated) between the two feeding groups. Constructing a comprehensive ceRNA network illuminated intricate regulatory mechanisms, with PGP and circRNA_0617 converging on bta-miR-2285q, mirrored by KLF15/circRNA_0345/bta-miR-20b and CTSF/circRNA_0348/bta-miR-146a. These findings shed light on the potential of circRNAs to influence yak muscle development and meat quality, offering valuable insights for future research. CONCLUSIONS: This investigation unraveled a complex interaction network between circRNAs、mRNAs and miRNAs in yak skeletal muscle. We further elucidated the target genes regulated by these target genes within the network, offering valuable insights into the potential regulatory mechanisms governing muscle development and meat quality-related traits in yaks.


Subject(s)
MicroRNAs , RNA, Circular , Cattle/genetics , Animals , RNA, Circular/genetics , RNA, Competitive Endogenous , MicroRNAs/genetics , RNA, Messenger/genetics , Meat/analysis
16.
Int J Biol Macromol ; 261(Pt 1): 129715, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38281519

ABSTRACT

In mammals, epigenetic modifications involving DNA methylation are necessary for the completion of the cell differentiation process. However, the global DNA methylation landscape and its dynamics during yak adipocyte differentiation remain unexplored. Here, we performed whole-genome bisulfite sequencing (WGBS) to asses DNA methylation in yak preadipocytes and adipocytes, combining these results with those of our previous studies on changes in chromatin accessibility and gene expression during yak adipogenesis. The results showed that CG methylation levels were lower in promoter than in exon and intron, and gradually decreasing from the distal regions to transcription start site (TSS). There was a significant negative correlation between CG methylation levels located in promoter and gene expression levels. The 46 genes shared by CG differentially methylated regions (DMRs) and differential chromatin accessibility were significantly enriched in Hedgehog and PI3K-Akt signaling pathways. ATAC-seq peaks with high chromatin accessibility located in both promoter (≤ 2 kb from TSS) and distal (> 2 kb from TSS) regions corresponded to low methylation levels. Taken together, these findings demonstrated that DNA methylation and its interactions with chromatin accessibility regulate gene expression during yak adipocyte differentiation, contributing to the understanding of mechanisms of various epigenetic modifications and their interactions in adipogenesis.


Subject(s)
DNA Methylation , Phosphatidylinositol 3-Kinases , Animals , Cattle , DNA Methylation/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Cell Differentiation/genetics , Chromatin/genetics , Chromatin/metabolism , Adipocytes , Mammals/genetics
17.
Int J Biol Macromol ; 257(Pt 1): 128632, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38061511

ABSTRACT

Ruminant rumen plays an important role in the digestibility of cellulose, hemicellulose, starch and fat. In this study, the yaks under graze and stall feeding were chosen as the models of different rumen bacteria and intramuscular fat (IMF). The characteristics of IMF deposition, serum indexes in yaks were detected; the bacteria, metabolites in rumen was explored by 16S rRNA sequencing technology, untargeted metabolomics based on liquid chromatography-mass spectrometer and gas chromatography, respectively; the transcriptome of longissimus thoracis was identified by RNA-Sequencing analysis. Based on above results, a hypothesis that yak IMF deposition is regulated by the combined action of microbiome-gut-brain and muscle axis was proposed. The short-chain fatty acids (SCFAs) and neurotransmitters precursors like acetylcholine produced in yak rumen promoted insulin secretion via central nervous system. These insulin resulted in the high expression of SREBF1 gene by gut-brain axis; SCFAs can directly arrive to muscular tissue via blood circulation system, then activated the expression of PPARγ gene by gut-muscle axis. The expression of lipogenesis gene SCD, FABP3, CPT1, FASN and ACC2 was accordingly up-regulated. This study firstly introduce the theory of microbiome-gut-brain/muscle axis into the study of ruminant, and comprehensively expounded the regulatory mechanism of yak IMF deposition.


Subject(s)
Gastrointestinal Microbiome , Insulin , Animals , Cattle , Insulin/metabolism , Brain-Gut Axis , RNA, Ribosomal, 16S/genetics , Muscles/metabolism , Fatty Acids, Volatile/metabolism , Bacteria/genetics , Ruminants
18.
Animals (Basel) ; 13(24)2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38136855

ABSTRACT

The morphogenesis of hair follicle structure is accompanied by the differentiation of skin tissue. Mammalian coats are produced by hair follicles. The formation of hair follicles requires signal transmission between the epidermis and dermis. However, knowledge of the transcriptional regulatory mechanism is still lacking. We used single-cell RNA sequencing to obtain 26,573 single cells from the scapular skin of yaks at hair follicle telogen and anagen stages. With the help of known reference marker genes, 11 main cell types were identified. In addition, we further analyzed the DP cell and dermal fibroblast lineages, drew a single-cell map of the DP cell and dermal fibroblast lineages, and elaborated the key genes, signals, and functions involved in cell fate decision making. The results of this study provide a very valuable resource for the analysis of the heterogeneity of DP cells and dermal fibroblasts in the skin and provide a powerful theoretical reference for further exploring the diversity of hair follicle cell types and hair follicle morphogenesis.

19.
Int J Biol Macromol ; 253(Pt 3): 126831, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37716658

ABSTRACT

The variety of species can be efficiently increased by interspecific hybridization. However, because the males in the hybrid progeny are usually sterile, this heterosis cannot be employed when other cattle and yaks are hybridized. While some system-level studies have sought to explore the etiological basis for male cattle-yak sterility, no systematic cellular analyses of this phenomenon have yet been performed. Here, single-cell RNA sequencing and UPHLC-MS/MS targeted metabolomics methods were used to study the differences in testicular tissue between 4-year-old male yak and 4-year-old male cattle-yak, providing new and comprehensive insights into the causes of male cattle-yak sterility. Cattle-yak testes samples detected 6 somatic cell types and one mixed germ cell type. Comparisons of these cell types revealed the more significant differences in Sertoli cells (SCs) and [Leydig cells and myoid cells (LCs_MCs)] between yak and cattle-yak samples compared to other somatic cell clusters. Even though the LCs and MCs from yaks and cattle-yaks were derived from the differentiation of the same progenitor cells, a high degree of overlap between LCs and MCs was observed in yak samples. Still, only a small overlap between LCs and MCs was observed in cattle-yak samples. Functional enrichment analyses revealed that genes down-regulated in cattle-yak SCs were primarily enriched in biological activity, whereas up-regulated genes in these cells were enriched for apoptotic activity. Furthermore, the genes of up-regulated in LCs_MCs of cattle-yak were significantly enriched in enzyme inhibitor and molecular function inhibitor activity. On the other hand, the genes of down-regulated in these cells were enriched for signal receptor binding, molecular function regulation, positive regulation of biological processes, and regulation of cell communication activity. The most significant annotated differences between yak and cattle-yak LCs_MCs were associated with cell-to-cell communication. While yak LCs_MCs regulated spermatogenic cells at spermatogonia, spermatocyte, and spermatid levels, no such relationships were found between cattle-yak LCs_MCs and germ cells. This may suggest that the somatic niche in male cattle-yak testes is a microenvironment that is ultimately not favorable for spermatogenesis.


Subject(s)
Infertility, Male , Tandem Mass Spectrometry , Humans , Animals , Cattle , Male , Testis/metabolism , Infertility, Male/metabolism , Spermatogenesis , Sequence Analysis, RNA
20.
Animals (Basel) ; 13(18)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37760215

ABSTRACT

Studying the mechanism of spermatogenesis is key to exploring the reproductive characteristics of male yaks. Although N6-methyladenosine (m6A) RNA modification has been reported to regulate spermatogenesis and reproductive function in mammals, the molecular mechanism of m6A in yak testis development and spermatogenesis remains largely unknown. Therefore, we collected testicular tissue from juvenile and adult yaks and found that the m6A level significantly increased after sexual maturity in yaks. In MeRIP-seq, 1702 hypermethylated peaks and 724 hypomethylated peaks were identified. The hypermethylated differentially methylated RNAs (DMRs) (CIB2, AK1, FOXJ2, PKDREJ, SLC9A3, and TOPAZ1) mainly regulated spermatogenesis. Functional enrichment analysis showed that DMRs were significantly enriched in the adherens junction, gap junction, and Wnt, PI3K, and mTOR signaling pathways, regulating cell development, spermatogenesis, and testicular endocrine function. The functional analysis of differentially expressed genes showed that they were involved in the biological processes of mitosis, meiosis, and flagellated sperm motility during the sexual maturity of yak testis. We also screened the key regulatory factors of testis development and spermatogenesis by combined analysis, which included BRCA1, CREBBP, STAT3, and SMAD4. This study indexed the m6A characteristics of yak testicles at different developmental stages, providing basic data for further research of m6A modification regulating yak testicular development.

SELECTION OF CITATIONS
SEARCH DETAIL