Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Food Chem ; 463(Pt 2): 141094, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39270496

ABSTRACT

The effects of hydrogen sulfide (H2S) on chilling injury (CI), reactive oxygen species (ROS) metabolism, sugar metabolism, pentose phosphate pathway (PPP), and membrane lipid metabolism in loquat fruit throughout the refrigerated period were investigated in this study. The findings indicated that H2S application restrained the increase in internal browning (IB), malondialdehyde (MDA) content, and electrolyte leakage, while sustaining higher total phenolic and total flavonoid levels, and lower soluble quinone content in loquat fruit. Besides, H2S promoted antioxidant accumulation and increased antioxidant enzyme activities by the regulation of ROS metabolism, along with increasing fructose and glucose levels and reducing power by activating sugar metabolism and PPP. Furthermore, H2S treatment retarded the degradation of phospholipids and fatty acids in loquat fruit by modulating membrane lipid metabolism relevant enzyme activities. These findings indicated that H2S application mitigated CI in loquat fruit by alleviating oxidative stress and maintaining cell membrane structural integrity.

2.
Foods ; 13(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38790826

ABSTRACT

Fresh-cut potatoes (Solanum tuberosum L.) are susceptible to browning and microbial contamination during storage. In this study, the effects of trans-2-hexenal (E2H), ascorbic acid (VC), dimethyl dicarbonate (DMDC), and the combined treatment of E2H, VC, and DMDC on quality deterioration in fresh-cut potatoes were investigated. The response surface methodology (RSM) demonstrated that E2H, VC, and DMDC concentrations of 0.010%, 0.65%, and 240 mg/L, respectively, were the optimum conditions for fresh-cut potato preservation. Further analysis showed that the combined treatment of E2H, VC, and DMDC was the most effective method of reducing quality deterioration in potatoes compared to the control and individual treatments. Furthermore, the combined treatment of E2H, VC, and DMDC could decrease the accumulation of reactive oxygen species (ROS) via improving antioxidant enzyme activities. Meanwhile, energy-metabolism-related enzyme activities and glutamate decarboxylase (GAD) activity were enhanced, while γ-aminobutyric acid transaminase (GABA-T) activity was reduced via the combined treatment of E2H, VC, and DMDC, which contributed to maintaining high energy levels and GABA content in potatoes. These findings suggested that the combined treatment of E2H, VC, and DMDC could protect membrane integrity through enhancing antioxidant capacity, energy levels, and GABA content to maintain quality in fresh-cut potatoes.

3.
Plant Physiol Biochem ; 212: 108743, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788295

ABSTRACT

Zucchini squashes are cold-sensitive and vulnerable to chilling injury (CI) resulting from reactive oxygen species (ROS) and hot water (HW) immersing effectively reduce CI symptoms during cold storage. However, mechanism involved in reduced ROS due to HW treatment has not been characterized well. In this study, tender green zucchini fruit were treated with HW for 15 min at 45 ± 1 °C and stored for 15 d at 4 ± 1 °C and above 90 % relative humidity. Results showed substantial reduction in CI index, electrolyte leakage, malonaldehyde (MDA) contents and ROS accumulation along with increased activity of ROS-scavenging enzymes due to HW treatment. To gain insight into the molecular mechanism involved in antioxidant defense system, transcriptomic analysis revealed that heat shock factors (HSF) accumulated due to HW treatment regulated the ROS pathway during cold stress. CpHSFA4a was one of the highly expressed transcription factors (TF) due to HW treatment that regulated the transcription of ROS enzymes related genes. CpHSFA4a bind actively with heat shock element (HSE) in promoter regions of CpSOD, CpCAT, CpAPX1, CpAPX2, and CpAPX3, activated and increased the expression of these genes. In conclusion, HW treatment alleviated the CI by maintaining ROS homeostasis through CpHSFA4a mediated ROS pathway in zucchini squashes during cold storage.


Subject(s)
Antioxidants , Fruit , Plant Proteins , Reactive Oxygen Species , Antioxidants/metabolism , Fruit/metabolism , Fruit/genetics , Reactive Oxygen Species/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Cold Temperature , Water/metabolism , Gene Expression Regulation, Plant , Cucurbita/genetics , Cucurbita/metabolism , Hot Temperature , Food Storage , Heat Shock Transcription Factors/metabolism , Heat Shock Transcription Factors/genetics
4.
Int J Mol Sci ; 20(11)2019 Jun 04.
Article in English | MEDLINE | ID: mdl-31167353

ABSTRACT

Lotus (Nelumbo nucifera Gaertn) is a wetland vegetable famous for its nutritional and medicinal value. Phenolic compounds are secondary metabolites that play important roles in the browning of fresh-cut fruits and vegetables, and chemical constituents are extracted from lotus for medicine due to their high antioxidant activity. Studies have explored in depth the changes in phenolic compounds during browning, while little is known about their synthesis during the formation of lotus rhizome. In this study, transcriptomic analyses of six samples were performed during lotus rhizome formation using a high-throughput tag sequencing technique. About 23 million high-quality reads were generated, and 92.14% of the data was mapped to the reference genome. The samples were divided into two stages, and we identified 23,475 genes in total, 689 of which were involved in the biosynthesis of secondary metabolites. A complex genetic crosstalk-regulated network involved in the biosynthesis of phenolic compounds was found during the development of lotus rhizome, and 25 genes in the phenylpropanoid biosynthesis pathway, 18 genes in the pentose phosphate pathway, and 30 genes in the flavonoid biosynthesis pathway were highly expressed. The expression patterns of key enzymes assigned to the synthesis of phenolic compounds were analyzed. Moreover, several differentially expressed genes required for phenolic compound biosynthesis detected by comparative transcriptomic analysis were verified through qRT-PCR. This work lays a foundation for future studies on the molecular mechanisms of phenolic compound biosynthesis during rhizome formation.


Subject(s)
Biosynthetic Pathways/genetics , Lotus/physiology , Phenols/metabolism , Plant Development/genetics , Rhizome/physiology , Transcriptome , Gene Expression Profiling , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant
SELECTION OF CITATIONS
SEARCH DETAIL