Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(11): e31858, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38845985

ABSTRACT

Antler is one of the primary animal raw materials exploited for technical purposes by the hunter-gatherer groups of the Eurasian Upper Palaeolithic (UP) all over the ecological range of deers, and beyond. It was exhaustively employed to produce one of the most critical tools for the survival of the UP societies: hunting weapons. However, antler implements can be made from diverse deer taxa, with different ecological requirements and ethological behaviours. Identifying the antler's origin at a taxonomic level is thus essential in improving our knowledge of humans' functional, practical and symbolic choices, as well as the human-animal interface during Prehistoric times. Nevertheless, palaeogenetics analyses have focused mainly on bone and teeth, with genetic studies of antler generally focused on modern deer conservation. Here we present the results of the first whole mitochondrial genome ancient DNA (aDNA) analysis by means of in-solution hybridisation capture of antlers from pre-Holocene archaeological contexts. We analysed a set of 50 Palaeolithic and Neolithic (c. 34-8ka) antler and osseous objects from South-Western Europe, Central Europe, South-Western Asia and the Caucasus. We successfully obtained aDNA, allowing us to identify the exploited taxa and demonstrate the archaeological relevance of those finds. Moreover, as most of the antlers were sampled using a minimally-invasive method, further analyses (morphometric, technical, genetic, radiometric and more) remain possible on these objects.

2.
Trends Genet ; 40(5): 398-409, 2024 May.
Article in English | MEDLINE | ID: mdl-38423916

ABSTRACT

Abundant and plentiful fruit crops are threatened by the loss of diverse legacy cultivars which are being replaced by a limited set of high-yielding ones. This article delves into the potential of paleogenomics that utilizes ancient DNA analysis to revive lost diversity. By focusing on grapevines, date palms, and tomatoes, recent studies showcase the effectiveness of paleogenomic techniques in identifying and understanding genetic traits crucial for crop resilience, disease resistance, and nutritional value. The approach not only tracks landrace dispersal and introgression but also sheds light on domestication events. In the face of major future environmental challenges, integrating paleogenomics with modern breeding strategies emerges as a promising avenue to significantly bolster fruit crop sustainability.


Subject(s)
Crops, Agricultural , Fruit , Crops, Agricultural/genetics , Fruit/genetics , Genomics/methods , Domestication , Plant Breeding/methods , Genetic Variation , Genome, Plant/genetics , Vitis/genetics , Solanum lycopersicum/genetics , Phoeniceae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL