Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(14)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37511424

ABSTRACT

Rett syndrome (RTT), a severe X-linked neurodevelopmental disorder, is primarily caused by mutations in the methyl CpG binding protein 2 gene (MECP2). Over 35% RTT patients carry nonsense mutation in MECP2, making it a suitable candidate disease for nonsense suppression therapy. In our previous study, gentamicin was found to induce readthrough of MECP2 nonsense mutations with modest efficiency. Given the recent discovery of readthrough enhancers, CDX compounds, we herein evaluated the potentiation effect of CDX5-1, CDX5-288, and CDX6-180 on gentamicin-mediated readthrough efficiency in transfected HeLa cell lines bearing the four most common MECP2 nonsense mutations. We showed that all three CDX compounds potentiated gentamicin-mediated readthrough and increased full-length MeCP2 protein levels in cells expressing the R168X, R255X, R270X, and R294X nonsense mutations. Among all three CDX compounds, CDX5-288 was the most potent enhancer and enabled the use of reduced doses of gentamicin, thus mitigating the toxicity. Furthermore, we successfully demonstrated the upregulation of full-length Mecp2 protein expression in fibroblasts derived from Mecp2R255X/Y mice through combinatorial treatment. Taken together, findings demonstrate the feasibility of this combinatorial approach to nonsense suppression therapy for a subset of RTT patients.


Subject(s)
Rett Syndrome , Humans , Mice , Animals , Rett Syndrome/drug therapy , Rett Syndrome/genetics , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Gentamicins/pharmacology , Codon, Nonsense , HeLa Cells , Mutation
2.
Genetics ; 221(4)2022 07 30.
Article in English | MEDLINE | ID: mdl-35731217

ABSTRACT

Mutations in FMR1 are the most common heritable cause of autism spectrum disorder. FMR1 encodes an RNA-binding protein, FMRP, which binds to long, autism-relevant transcripts and is essential for normal neuronal and ovarian development. In contrast to the prevailing model that FMRP acts to block translation elongation, we previously found that FMRP activates the translation initiation of large proteins in Drosophila oocytes. We now provide evidence that FMRP-dependent translation is conserved and occurs in the mammalian brain. Our comparisons of the mammalian cortex and Drosophila oocyte ribosome profiling data show that translation of FMRP-bound mRNAs decreases to a similar magnitude in FMRP-deficient tissues from both species. The steady-state levels of several FMRP targets were reduced in the Fmr1 KO mouse cortex, including a ∼50% reduction of Auts2, a gene implicated in an autosomal dominant autism spectrum disorder. To distinguish between effects on elongation and initiation, we used a novel metric to detect the rate-limiting ribosome stalling. We found no evidence that FMRP target protein production is governed by translation elongation rates. FMRP translational activation of large proteins may be critical for normal human development, as more than 20 FMRP targets including Auts2 are dosage sensitive and are associated with neurodevelopmental disorders caused by haploinsufficiency.


Subject(s)
Autism Spectrum Disorder , Drosophila Proteins , Animals , Autism Spectrum Disorder/genetics , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Fragile X Mental Retardation Protein/genetics , Humans , Mammals/genetics , Mice , Neurons/metabolism , Protein Biosynthesis
3.
J Biol Chem ; 298(2): 101546, 2022 02.
Article in English | MEDLINE | ID: mdl-34999117

ABSTRACT

Nonsense mutations, which occur in ∼11% of patients with genetic disorders, introduce premature termination codons (PTCs) that lead to truncated proteins and promote nonsense-mediated mRNA decay. Aminoglycosides such as G418 permit PTC readthrough and so may be used to address this problem. However, their effects are variable between patients, making clinical use of aminoglycosides challenging. In this study, we tested whether TRPC nonselective cation channels contribute to the variable PTC readthrough effect of aminoglycosides by controlling their cellular uptake. Indeed, a recently reported selective TRPC5 inhibitor, AC1903, consistently suppressed G418 uptake and G418-induced PTC readthrough in the DMS-114 cancer cell line and junctional epidermolysis bullosa (JEB) patient-derived keratinocytes. Interestingly, the effect of AC1903 in DMS-114 cells was mimicked by nonselective TRPC inhibitors, but not by well-characterized inhibitors of TRPC1/4/5 (Pico145, GFB-8438) or TRPC3/6/7 (SAR7334), suggesting that AC1903 may work through additional or undefined targets. Indeed, in our experiments, AC1903 inhibited multiple TRPC channels including TRPC3, TRPC4, TRPC5, TRPC6, TRPC4-C1, and TRPC5-C1, as well as endogenous TRPC1:C4 channels in A498 renal cancer cells, all with low micromolar IC50 values (1.8-18 µM). We also show that AC1903 inhibited TRPV4 channels, but had weak or no effects on TRPV1 and no effect on the nonselective cation channel PIEZO1. Our study reveals that AC1903 has previously unrecognized targets, which need to be considered when interpreting results from experiments with this compound. In addition, our data strengthen the hypothesis that nonselective calcium channels are involved in aminoglycoside uptake.


Subject(s)
Aminoglycosides , Codon, Nonsense , Indazoles , TRPC Cation Channels , Aminoglycosides/pharmacology , Codon, Nonsense/drug effects , Humans , Indazoles/pharmacology , Protein Synthesis Inhibitors , TRPC Cation Channels/antagonists & inhibitors , TRPC Cation Channels/genetics , TRPC Cation Channels/metabolism
4.
ACS Med Chem Lett ; 12(9): 1486-1492, 2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34531957

ABSTRACT

A significant proportion of genetic disease cases arise from truncation of proteins caused by premature termination codons. In eukaryotic cells some aminoglycosides cause readthrough of premature termination codons during protein translation. Inducing readthrough of these codons can potentially be of therapeutic value in the treatment of numerous genetic diseases. A significant drawback to the repeated use of aminoglycosides as treatments is the lack of balance between their readthrough efficacy and toxicity. The synthesis and biological testing of designer aminoglycoside compounds is documented herein. We disclose the implementation of a strategy to reduce cellular toxicity and maintain readthrough activity of a library of compounds by modification of the overall cationic charge of the aminoglycoside scaffold through ring I modifications.

5.
PLoS Biol ; 19(5): e3001221, 2021 05.
Article in English | MEDLINE | ID: mdl-33939688

ABSTRACT

Premature termination codons (PTC) cause over 10% of genetic disease cases. Some aminoglycosides that bind to the ribosome decoding center can induce PTC readthrough and restore low levels of full-length functional proteins. However, concomitant inhibition of protein synthesis limits the extent of PTC readthrough that can be achieved by aminoglycosides like G418. Using a cell-based screen, we identified a small molecule, the phenylpyrazoleanilide Y-320, that potently enhances TP53, DMD, and COL17A1 PTC readthrough by G418. Unexpectedly, Y-320 increased cellular protein levels and protein synthesis, measured by SYPRO Ruby protein staining and puromycin labeling, as well as ribosome biogenesis measured using antibodies to rRNA and ribosomal protein S6. Y-320 did not increase the rate of translation elongation and it exerted its effects independently of mTOR signaling. At the single cell level, exposure to Y-320 and G418 increased ribosome content and protein synthesis which correlated strongly with PTC readthrough. As a single agent, Y-320 did not affect translation fidelity measured using a luciferase reporter gene but it enhanced misincorporation by G418. RNA-seq data showed that Y-320 up-regulated the expression of CXC chemokines CXCL10, CXCL8, CXCL2, CXCL11, CXCL3, CXCL1, and CXCL16. Several of these chemokines exert their cellular effects through the receptor CXCR2 and the CXCR2 antagonist SB225002 reduced cellular protein levels and PTC readthrough in cells exposed to Y-320 and G418. These data show that the self-limiting nature of PTC readthrough by G418 can be compensated by Y-320, a potent enhancer of PTC readthrough that increases ribosome biogenesis and protein synthesis. They also support a model whereby increased PTC readthrough is enabled by increased protein synthesis mediated by an autocrine chemokine signaling pathway. The findings also raise the possibility that inflammatory processes affect cellular propensity to readthrough agents and that immunomodulatory drugs like Y-320 might find application in PTC readthrough therapy.


Subject(s)
Aminoglycosides/pharmacology , Codon, Nonsense/genetics , Ribosomes/metabolism , Aminoglycosides/metabolism , Aminoglycosides/physiology , Cell Line , Chemokines, CXC/drug effects , Chemokines, CXC/metabolism , Codon, Nonsense/metabolism , Codon, Terminator , Gentamicins/pharmacology , Humans , Mutation/drug effects , Protein Biosynthesis/drug effects , Protein Synthesis Inhibitors , Ribosomes/drug effects
6.
Nucleic Acids Res ; 49(7): 3692-3708, 2021 04 19.
Article in English | MEDLINE | ID: mdl-33764477

ABSTRACT

Premature termination codon (PTC) readthrough is considered a potential treatment for genetic diseases caused by nonsense mutations. High concentrations of aminoglycosides induce low levels of PTC readthrough but also elicit severe toxicity. Identifying compounds that enhance PTC readthrough by aminoglycosides or reduce their toxicity is a continuing challenge. In humans, a binary complex of eukaryotic release factors 1 (eRF1) and 3 (eRF3a or eRF3b) mediates translation termination. They also participate in the SURF (SMG1-UPF1-eRF1-eRF3) complex assembly involved in nonsense-mediated mRNA decay (NMD). We show that PTC readthrough by aminoglycoside G418 is considerably enhanced by eRF3a and eRF3b siRNAs and cereblon E3 ligase modulators CC-885 and CC-90009, which induce proteasomal degradation of eRF3a and eRF3b. eRF3 degradation also reduces eRF1 levels and upregulates UPF1 and selectively stabilizes TP53 transcripts bearing a nonsense mutation over WT, indicating NMD suppression. CC-90009 is considerably less toxic than CC-885 and it enhances PTC readthrough in combination with aminoglycosides in mucopolysaccharidosis type I-Hurler, late infantile neuronal ceroid lipofuscinosis, Duchenne muscular dystrophy and junctional epidermolysis bullosa patient-derived cells with nonsense mutations in the IDUA, TPP1, DMD and COL17A1 genes, respectively. Combination of CC-90009 with aminoglycosides such as gentamicin or ELX-02 may have potential for PTC readthrough therapy.


Subject(s)
Aminoglycosides/pharmacology , Codon, Nonsense , Genetic Diseases, Inborn , Peptide Termination Factors/metabolism , Cell Line , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/therapy , Humans , Tripeptidyl-Peptidase 1
7.
Mol Neurodegener ; 15(1): 21, 2020 03 16.
Article in English | MEDLINE | ID: mdl-32178712

ABSTRACT

BACKGROUND: Frontotemporal lobar degeneration (FTLD) is a devastating and progressive disorder, and a common cause of early onset dementia. Progranulin (PGRN) haploinsufficiency due to autosomal dominant mutations in the progranulin gene (GRN) is an important cause of FTLD (FTLD-GRN), and nearly a quarter of these genetic cases are due to a nonsense mutation. Premature termination codons (PTC) can be therapeutically targeted by compounds allowing readthrough, and aminoglycoside antibiotics are known to be potent PTC readthrough drugs. Restoring endogenous PGRN through PTC readthrough has not previously been explored as a therapeutic intervention in FTLD. METHODS: We studied whether the aminoglycoside G418 could increase PGRN expression in HEK293 and human induced pluripotent stem cell (hiPSC)-derived neurons bearing the heterozygous S116X, R418X, and R493X pathogenic GRN nonsense mutations. We further tested a novel substituted phthalimide PTC readthrough enhancer in combination with G418 in our cellular models. We next generated a homozygous R493X knock-in hiPSC isogenic line (R493X-/- KI), assessing whether combination treatment in hiPSC-derived neurons and astrocytes could increase PGRN and ameliorate lysosomal dysfunction relevant to FTLD-GRN. To provide in vivo proof-of-concept of our approach, we measured brain PGRN after intracerebroventricular administration of G418 in mice expressing the V5-tagged GRN nonsense mutation R493X. RESULTS: The R418X and R493X mutant GRN cell lines responded to PTC readthrough with G418, and treatments increased PGRN levels in R493X-/- KI hiPSC-derived neurons and astrocytes. Combining G418 with a PTC readthrough enhancer increased PGRN levels over G418 treatment alone in vitro. PGRN deficiency has been shown to impair lysosomal function, and the mature form of the lysosomal protease cathepsin D is overexpressed in R493X-/- KI neurons. Increasing PGRN through G418-mediated PTC readthrough normalized this abnormal lysosomal phenotype in R493X-/- KI neuronal cultures. A single intracerebroventricular injection of G418 induced GRN PTC readthrough in 6-week-old AAV-GRN-R493X-V5 mice. CONCLUSIONS: Taken together, our findings suggest that PTC readthrough may be a potential therapeutic strategy for FTLD caused by GRN nonsense mutations.


Subject(s)
Frontotemporal Lobar Degeneration/genetics , Gene Expression/drug effects , Gentamicins/pharmacology , Lysosomes/drug effects , Progranulins/genetics , Animals , Cells, Cultured , Codon, Nonsense , Codon, Terminator , HEK293 Cells , Humans , Lysosomes/metabolism , Mice , Neurons/drug effects , Neurons/metabolism , Progranulins/biosynthesis , Up-Regulation
8.
ACS Med Chem Lett ; 10(10): 1450-1456, 2019 Oct 10.
Article in English | MEDLINE | ID: mdl-31620232

ABSTRACT

We report a novel negamycin derivative TCP-1109 (13x) which serves as a potent readthrough drug candidate against nonsense-associated diseases. We previously demonstrated that TCP-112 (7), a nor-compound of native 3-epi-deoxynegmaycin, showed a higher readthrough activity than (+)-negamycin. In the present study, we performed a structure-activity relationship (SAR) study of compound 7 focused on its 3-amino group in an effort to develop a more potent readthrough compound. Introduction of a variety of natural or unnatural amino acids to the 3-amino group gave us the more potent derivative 13x which has about four times higher readthrough activity than 7 in a cell-based assay using a premature termination codon of TGA derived from Duchenne muscular dystrophy. The activity was dose-dependent and relatively selective for TGA. However, the activities for TAG and TAA were also higher than those of (+)-negamycin and 7. Moreover, compound 13x showed significant cell-based readthrough activity for several nonsense mutations derived from other nonsense-associated diseases. It is suggested that 13x has the potential to be a readthrough drug useful for the treatment of many kinds of nonsense-associated diseases.

9.
PLoS One ; 14(5): e0216423, 2019.
Article in English | MEDLINE | ID: mdl-31120902

ABSTRACT

Nonsense mutations constitute ~10% of TP53 mutations in cancer. They introduce a premature termination codon that gives rise to truncated p53 protein with impaired function. The aminoglycoside G418 can induce TP53 premature termination codon readthrough and thus increase cellular levels of full-length protein. Small molecule phthalimide derivatives that can enhance the readthrough activity of G418 have also been described. To determine whether readthrough enhancers exist among drugs that are already approved for use in humans, we tested seven antimalarial drugs for readthrough of the common R213X TP53 nonsense mutation in HDQ-P1 breast cancer cells. Mefloquine induced no TP53 readthrough activity as a single agent but it strongly potentiated readthrough by G418. The two enantiomers composing pharmaceutical mefloquine potentiated readthrough to similar levels in HDQ-P1 cells and also in SW900, NCI-H1688 and HCC1937 cancer cells with different TP53 nonsense mutations. Exposure to G418 and mefloquine increased p53 phosphorylation at Ser15 and P21 transcript levels following DNA damage, indicating p53 produced via readthrough was functional. Mefloquine does not appear to enhance readthrough via lysosomotropic effects as it did not significantly affect lysosomal pH, the cellular levels of G418 or its distribution in organellar or cytosolic fractions. The availability of a readthrough enhancer that is already approved for use in humans should facilitate study of the therapeutic potential of TP53 readthrough in preclinical cancer models.


Subject(s)
Antimalarials/pharmacology , Codon, Nonsense , Codon, Terminator , Gentamicins/pharmacology , Mefloquine/pharmacology , Peptide Chain Termination, Translational , Tumor Suppressor Protein p53 , HCT116 Cells , Humans , Peptide Chain Termination, Translational/drug effects , Peptide Chain Termination, Translational/genetics , Tumor Suppressor Protein p53/biosynthesis , Tumor Suppressor Protein p53/genetics
10.
ACS Med Chem Lett ; 10(5): 726-731, 2019 May 09.
Article in English | MEDLINE | ID: mdl-31097990

ABSTRACT

Nonsense mutations introduce a premature termination codon (PTC) and are the underlying cause of multiple rare genetic diseases and cancers. Although certain aminoglycosides bind to eukaryotic ribosomes enabling incorporation of an amino acid at the PTC and formation of full-length protein, they are inefficient and toxic at therapeutic doses. Library screening in assays that measure readthrough at a PTC in the TP53 gene in human HDQ-P1 cells identified six novel 2-aminothiazole-4-carboxamide derivatives that potentiate the PTC readthrough (PTCR) efficiency of G418 when used in combination. The two most potent compounds incorporated a 4-indazole motif on the 2-aminothiazole nitrogen and a hydrophobic aryl substituent on the carboxamide nitrogen. These compounds are valuable tools to further investigate the therapeutic potential of aminoglycoside-induced PTCR.

11.
ACS Med Chem Lett ; 9(12): 1285-1291, 2018 Dec 13.
Article in English | MEDLINE | ID: mdl-30613341

ABSTRACT

Nonsense suppressors (NonSups) induce "readthrough", i.e., the selection of near cognate tRNAs at premature termination codons and insertion of the corresponding amino acid into nascent polypeptide. Prior readthrough measurements utilized contexts in which NonSups can promote readthrough directly, by binding to one or more of the components of the protein synthesis machinery, or indirectly, by several other mechanisms. Here we utilize a new, highly purified in vitro assay to measure exclusively direct nonsense suppressor-induced readthrough. Of 16 NonSups tested, 12 display direct readthrough, with results suggesting that such NonSups act by at least two different mechanisms. In preliminary work we demonstrate the potential of single molecule fluorescence energy transfer measurements to elucidate mechanisms of NonSup-induced direct readthrough, which will aid efforts to identify NonSups having improved clinical efficacy.

12.
Proc Natl Acad Sci U S A ; 114(13): 3479-3484, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28289221

ABSTRACT

Nonsense mutations underlie about 10% of rare genetic disease cases. They introduce a premature termination codon (PTC) and prevent the formation of full-length protein. Pharmaceutical gentamicin, a mixture of several related aminoglycosides, is a frequently used antibiotic in humans that can induce PTC readthrough and suppress nonsense mutations at high concentrations. However, testing of gentamicin in clinical trials has shown that safe doses of this drug produce weak and variable readthrough activity that is insufficient for use as therapy. In this study we show that the major components of pharmaceutical gentamicin lack PTC readthrough activity but the minor component gentamicin B1 (B1) is a potent readthrough inducer. Molecular dynamics simulations reveal the importance of ring I of B1 in establishing a ribosome configuration that permits pairing of a near-cognate complex at a PTC. B1 induced readthrough at all three nonsense codons in cultured cancer cells with TP53 (tumor protein p53) mutations, in cells from patients with nonsense mutations in the TPP1 (tripeptidyl peptidase 1), DMD (dystrophin), SMARCAL1 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a-like 1), and COL7A1 (collagen type VII alpha 1 chain) genes, and in an in vivo tumor xenograft model. The B1 content of pharmaceutical gentamicin is highly variable and major gentamicins suppress the PTC readthrough activity of B1. Purified B1 provides a consistent and effective source of PTC readthrough activity to study the potential of nonsense suppression for treatment of rare genetic disorders.


Subject(s)
Anti-Bacterial Agents/pharmacology , Codon, Nonsense/genetics , Gentamicins/pharmacology , Mutation/drug effects , Aminopeptidases/genetics , Anti-Bacterial Agents/chemistry , Cell Line, Tumor , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Dystrophin/genetics , Gentamicins/chemistry , Humans , Serine Proteases/genetics , Tripeptidyl-Peptidase 1 , Tumor Suppressor Protein p53/genetics
13.
Am J Med Genet A ; 170(12): 3106-3114, 2016 12.
Article in English | MEDLINE | ID: mdl-27513830

ABSTRACT

Failure to thrive arises as a complication of a heterogeneous group of disorders. We describe two female siblings with spastic paraplegia and global developmental delay but also, atypically for the HSPs, poor weight gain classified as failure to thrive. After extensive clinical and biochemical investigations failed to identify the etiology, we used exome sequencing to identify biallelic UNC80 mutations (NM_032504.1:c.[3983-3_3994delinsA];[2431C>T]. The paternally inherited NM_032504.1:c.3983-3_3994delinsA is predicted to encode p.Ser1328Argfs*19 and the maternally inherited NM_032504.1:c.2431C>T is predicted to encode p.Arg811*. No UNC80 mRNA was detectable in patient cultured skin fibroblasts, suggesting UNC80 loss of function by nonsense mediated mRNA decay. Further supporting the UNC80 mutations as causative of these siblings' disorder, biallelic mutations in UNC80 have recently been described among individuals with an overlapping phenotype. This report expands the disease spectrum associated with UNC80 mutations. © 2016 Wiley Periodicals, Inc.


Subject(s)
Carrier Proteins/genetics , Developmental Disabilities/genetics , Failure to Thrive/genetics , Membrane Proteins/genetics , Paraplegia/genetics , Child , Child, Preschool , Developmental Disabilities/complications , Developmental Disabilities/physiopathology , Exome/genetics , Failure to Thrive/complications , Failure to Thrive/physiopathology , Female , Genetic Predisposition to Disease , High-Throughput Nucleotide Sequencing , Humans , Paraplegia/complications , Paraplegia/physiopathology , RNA Stability/genetics , Siblings
14.
Nucleic Acids Res ; 44(14): 6583-98, 2016 08 19.
Article in English | MEDLINE | ID: mdl-27407112

ABSTRACT

Nonsense mutations introduce premature termination codons and underlie 11% of genetic disease cases. High concentrations of aminoglycosides can restore gene function by eliciting premature termination codon readthrough but with low efficiency. Using a high-throughput screen, we identified compounds that potentiate readthrough by aminoglycosides at multiple nonsense alleles in yeast. Chemical optimization generated phthalimide derivative CDX5-1 with activity in human cells. Alone, CDX5-1 did not induce readthrough or increase TP53 mRNA levels in HDQ-P1 cancer cells with a homozygous TP53 nonsense mutation. However, in combination with aminoglycoside G418, it enhanced readthrough up to 180-fold over G418 alone. The combination also increased readthrough at all three nonsense codons in cancer cells with other TP53 nonsense mutations, as well as in cells from rare genetic disease patients with nonsense mutations in the CLN2, SMARCAL1 and DMD genes. These findings open up the possibility of treating patients across a spectrum of genetic diseases caused by nonsense mutations.


Subject(s)
Aminoglycosides/pharmacology , Codon, Nonsense/genetics , Saccharomyces cerevisiae/genetics , Small Molecule Libraries/pharmacology , Alleles , Aminoglycosides/chemistry , Genetic Diseases, Inborn/genetics , HCT116 Cells , Homozygote , Humans , Paromomycin/pharmacology , Phthalimides/chemistry , Phthalimides/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Saccharomyces cerevisiae/drug effects , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Time Factors , Tripeptidyl-Peptidase 1 , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
15.
Clin Immunol ; 161(2): 355-65, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26499378

ABSTRACT

Schimke immuno-osseous dysplasia (SIOD) is an autosomal recessive, fatal childhood disorder associated with skeletal dysplasia, renal dysfunction, and T-cell immunodeficiency. This disease is linked to biallelic loss-of-function mutations of the SMARCAL1 gene. Although recurrent infection, due to T-cell deficiency, is a leading cause of morbidity and mortality, the etiology of the T-cell immunodeficiency is unclear. Here, we demonstrate that the T cells of SIOD patients have undetectable levels of protein and mRNA for the IL-7 receptor alpha chain (IL7Rα) and are unresponsive to stimulation with IL-7, indicating a loss of functional receptor. No pathogenic mutations were detected in the exons of IL7R in these patients; however, CpG sites in the IL7R promoter were hypermethylated in SIOD T cells. We propose therefore that the lack of IL7Rα expression, associated with hypermethylation of the IL7R promoter, in T cells and possibly their earlier progenitors, restricts T-cell development in SIOD patients.


Subject(s)
Arteriosclerosis/genetics , Immunologic Deficiency Syndromes/genetics , Nephrotic Syndrome/genetics , Osteochondrodysplasias/genetics , Pulmonary Embolism/genetics , Receptors, Interleukin-7/genetics , T-Lymphocytes/metabolism , Adolescent , Adult , Arteriosclerosis/metabolism , Arteriosclerosis/pathology , Cells, Cultured , Child , Child, Preschool , DNA Helicases/genetics , DNA Methylation , Flow Cytometry , Gene Expression , Humans , Immunohistochemistry , Immunologic Deficiency Syndromes/metabolism , Immunologic Deficiency Syndromes/pathology , Interleukin-17/pharmacology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Mutation , Nephrotic Syndrome/metabolism , Nephrotic Syndrome/pathology , Osteochondrodysplasias/metabolism , Osteochondrodysplasias/pathology , Primary Immunodeficiency Diseases , Promoter Regions, Genetic/genetics , Pulmonary Embolism/metabolism , Pulmonary Embolism/pathology , Receptors, Interleukin-7/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Young Adult
16.
J Histochem Cytochem ; 63(1): 32-44, 2015 01.
Article in English | MEDLINE | ID: mdl-25319549

ABSTRACT

Schimke immuno-osseous dysplasia (SIOD) is a pleiotropic disorder caused by mutations in the SWI/SNF2-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a-like-1 (SMARCAL1) gene, with multiple clinical features, notably end-stage renal disease. Here we characterize the renal pathology in SIOD patients. Our analysis of SIOD patient renal biopsies demonstrates the tip and collapsing variants of focal segmental glomerulosclerosis (FSGS). Additionally, electron microscopy revealed numerous glomerular abnormalities most notably in the podocyte and Bowman's capsule. To better understand the role of SMARCAL1 in the pathogenesis of FSGS, we defined SMARCAL1 expression in the developing and mature kidney. In the developing fetal kidney, SMARCAL1 is expressed in the ureteric epithelium, stroma, metanephric mesenchyme, and in all stages of the developing nephron, including the maturing glomerulus. In postnatal kidneys, SMARCAL1 expression is localized to epithelial tubules of the nephron, collecting ducts, and glomerulus (podocytes and endothelial cells). Interestingly, not all cells within the same lineage expressed SMARCAL1. In renal biopsies from SIOD patients, TUNEL analysis detected marked increases in DNA fragmentation. Our results highlight the cells that may contribute to the renal pathogenesis in SIOD. Further, we suggest that disruptions in genomic integrity during fetal kidney development contribute to the pathogenesis of FSGS in SIOD patients.


Subject(s)
Arteriosclerosis/metabolism , Arteriosclerosis/pathology , DNA Helicases/metabolism , Gene Expression Regulation , Immunologic Deficiency Syndromes/metabolism , Immunologic Deficiency Syndromes/pathology , Kidney/metabolism , Kidney/pathology , Nephrotic Syndrome/metabolism , Nephrotic Syndrome/pathology , Osteochondrodysplasias/metabolism , Osteochondrodysplasias/pathology , Pulmonary Embolism/metabolism , Pulmonary Embolism/pathology , Animals , Arteriosclerosis/complications , Arteriosclerosis/genetics , Child , Child, Preschool , DNA Fragmentation , Female , Glomerulosclerosis, Focal Segmental/complications , Humans , Immunologic Deficiency Syndromes/complications , Immunologic Deficiency Syndromes/genetics , Kidney/embryology , Kidney/ultrastructure , Male , Mice , Nephrotic Syndrome/complications , Nephrotic Syndrome/genetics , Osteochondrodysplasias/complications , Osteochondrodysplasias/genetics , Primary Immunodeficiency Diseases , Pulmonary Embolism/complications , Pulmonary Embolism/genetics
17.
J Clin Res Pediatr Endocrinol ; 5(3): 199-201, 2013 Sep 10.
Article in English | MEDLINE | ID: mdl-24072090

ABSTRACT

Thiamine-responsive megaloblastic anemia (TRMA) is a clinical triad characterized by megaloblastic anemia, non-autoimmune diabetes mellitus, and sensory-neural hearing loss. Mutations in the thiamine transporter gene, solute carrier family 19, member 2 (SLC19A2), have been associated with TRMA. Three pediatric patients from a large consanguineous Iranian family with hyperglycemia, anemia, and hearing loss were clinically diagnosed with TRMA. In all three patients, TRMA was confirmed by direct sequencing of the SLC19A2 gene that revealed a novel missense homozygous mutation c.382 G>A (p.E128K). This mutation results in the substitution of glutamic acid to lysine at position 128 in exon 2 and was not detected in 200 control chromosomes. Thiamine therapy reversed the anemia and alleviated the hyperglycemia in all three patients. We recommend sequence analysis of the SLC19A2 gene in individuals with a clinical triad of diabetes mellitus, hearing loss, and anemia. The administration of thiamine ameliorates the megaloblastic anemia and the hyperglycemia in patients with TRMA.


Subject(s)
Anemia, Megaloblastic/drug therapy , Anemia, Megaloblastic/genetics , Hearing Loss, Sensorineural/genetics , Membrane Transport Proteins/genetics , Thiamine/therapeutic use , Child, Preschool , Consanguinity , Diabetes Mellitus/drug therapy , Diabetes Mellitus/genetics , Female , Homozygote , Humans , Infant , Insulin/administration & dosage , Male , Mutation, Missense , Pedigree
18.
Am J Med Genet A ; 161A(10): 2609-13, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23950031

ABSTRACT

Schimke immuno-osseous dysplasia (SIOD, OMIM 242900) is a rare autosomal recessive multisystem childhood disorder characterized by short stature, renal failure, T-cell immunodeficiency, and hypersensitivity to genotoxic agents. SIOD is associated with biallelic mutations in SMARCAL1 (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin, subfamily a-like 1), which encodes a DNA stress response enzyme with annealing helicase activity. Two features of SIOD causing much morbidity and mortality are bone marrow failure and T-cell deficiency with the consequent opportunistic infections. To address the safety and efficacy of bone marrow transplantation (BMT) in SIOD, we reviewed the outcomes of the only five SIOD patients known to us in whom bone marrow or hematopoietic stem cell transplantation has been attempted. We find that only one patient survived the transplantation procedure and that the existing indicators of a good prognosis for bone marrow transplantation were not predictive in this small cohort. Given these observations, we also discuss some considerations for the poor outcomes.


Subject(s)
Arteriosclerosis/therapy , Bone Marrow Transplantation , Immunologic Deficiency Syndromes/therapy , Nephrotic Syndrome/therapy , Osteochondrodysplasias/therapy , Pulmonary Embolism/therapy , Arteriosclerosis/genetics , Bone Marrow Transplantation/adverse effects , Child , Child, Preschool , DNA Helicases/genetics , Fatal Outcome , Graft vs Host Disease/drug therapy , Graft vs Host Disease/etiology , Humans , Immunologic Deficiency Syndromes/genetics , Male , Mutation , Nephrotic Syndrome/genetics , Osteochondrodysplasias/genetics , Primary Immunodeficiency Diseases , Pulmonary Embolism/genetics , Transplantation, Homologous , Treatment Outcome
19.
Pediatr Blood Cancer ; 60(9): E88-90, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23630135

ABSTRACT

Schimke Immunoosseous Dysplasia (SIOD) is a rare, autosomal recessive disorder of childhood with classical features of spondyloepiphyseal dysplasia, renal failure, and T cell immunodeficiency. SIOD has been associated with several malignancies, including non-Hodgkin lymphoma and osteosarcoma. About half of SIOD patients have biallelic mutations in SMARCAL1 (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin, subfamily a-like 1). This gene encodes an annealing helicase and replication stress response protein that localizes to damage-stalled DNA replication forks. We report a child with SIOD and a novel S859P missense mutation in SMARCAL1 who developed undifferentiated carcinoma of the sinus.


Subject(s)
Arteriosclerosis/genetics , Carcinoma/genetics , DNA Helicases/genetics , Immunologic Deficiency Syndromes/genetics , Mutation, Missense , Nephrotic Syndrome/genetics , Nose Neoplasms/genetics , Osteochondrodysplasias/genetics , Pulmonary Embolism/genetics , Amino Acid Substitution , Arteriosclerosis/complications , Child, Preschool , Humans , Immunologic Deficiency Syndromes/complications , Male , Nephrotic Syndrome/complications , Osteochondrodysplasias/complications , Primary Immunodeficiency Diseases , Pulmonary Embolism/complications
20.
Endocrine ; 44(1): 212-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23345044

ABSTRACT

Mutations in the 11ß-hydroxylase (CYP11B1) gene are the second leading cause of congenital adrenal hyperplasia (CAH), an autosomal recessive disorder characterized by adrenal insufficiency, virilization of female external genitalia, and hypertension with or without hypokalemic alkalosis. Molecular analysis of CYP11B1 gene in CAH patients with 11ß-hydroxylase deficiency was performed in this study. Cycle sequencing of 9 exons in CYP11B1 was performed in 5 unrelated families with 11ß-hydroxylase deficient children. Three-dimensional models for the normal and mutant proteins and their affinity to their known substrates were examined. Analysis of the CYP11B1 gene revealed two novel mutations, a small insertion in exon 7 (InsAG393) and a small deletion in exon 2 (DelG766), and three previously known missense mutations (T318M, Q356X, and R427H). According to docking results, the affinity of the protein to its substrates is highly reduced by these novel mutations. DelG766 has more negative impact on the protein in comparison to InsAG393. The novel mutations, InsAG393 and DelG766, change the folding of the protein and disrupt the enzyme's active site as it was measured in the protein modeling and substrate binding analysis. Molecular modeling and sequence conservation were predictive of clinical severity of the disease and correlated with the clinical diagnosis of the patients.


Subject(s)
Adrenal Hyperplasia, Congenital/genetics , Mutation , Steroid 11-beta-Hydroxylase/chemistry , Steroid 11-beta-Hydroxylase/genetics , Adolescent , Adrenal Hyperplasia, Congenital/epidemiology , Child , Child, Preschool , DNA Mutational Analysis , Family , Humans , Male , Models, Molecular , Molecular Docking Simulation , Mutation/physiology , Pedigree , Protein Biosynthesis , Steroid 11-beta-Hydroxylase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL