Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Colloids Surf B Biointerfaces ; 239: 113937, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38749166

ABSTRACT

Osteosarcoma conventional chemotherapeutics are known for their side effects, limited options, and induction of drug resistance. This creates the need to develop new therapeutics capable of effectively destroying cancer cells with low toxicity, improving patient survival rate and their life quality. This work reports a novel drug delivery nanoplataform made of Natural Melanin Nanoparticles (MNPs), obtained from Sepia officinalis ink, with 99% incorporation efficiency of doxorubicin (Dox) without the use of non-toxic solvents. A significant photothermal effect was shown by a 36ºC increment after 10 min of laser irradiation, surpassing reported values for synthetic melanin. A sustained drug release of ca. 23% with photothermal stimuli was observed, compared to 15% without stimuli, after 48 h. This nanoplatform is obtained as a food industry side product, which makes it a natural cost-effective biomedical material. Natural MPs were applied in an osteosarcoma cell line (SaOs-2), and internalized by the cells in less than 2 h, showing cytocompatibility up to 1000 µg/mL after 72 h of contact with cells. On the contrary, when natural MNPs loaded with Dox (Dox-MNPs) were placed in contact with the SaOs-2 cells and were simultaneously receiving NIR light it was observed a 93% reduction in cancer cells in 48 h, revealing a synergistic effect between chemotherapy and phototherapy. To our knowledge this is the first time that natural MNPs extracted from Sepia officinalis were tested on an osteosarcoma cell line as chemo-photothermal agent, showing these NPs are an effective, cost-effective, reproducible, non-toxic nanoplatform for osteosarcoma treatment using combined effects.


Subject(s)
Cell Survival , Doxorubicin , Melanins , Nanoparticles , Osteosarcoma , Sepia , Humans , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Doxorubicin/pharmacology , Doxorubicin/chemistry , Melanins/metabolism , Nanoparticles/chemistry , Sepia/chemistry , Cell Survival/drug effects , Cell Line, Tumor , Drug Liberation , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Bone Neoplasms/drug therapy , Bone Neoplasms/pathology , Particle Size , Cost-Benefit Analysis , Drug Screening Assays, Antitumor
2.
Crit Rev Food Sci Nutr ; : 1-43, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36688280

ABSTRACT

Global population growth tremendously impacts the global food industry, endangering food safety and quality. Mycotoxins, particularly Ochratoxin-A (OTA), emerge as a food chain production threat, since it is produced by fungus that contaminates different food species and products. Beyond this, OTA exhibits a possible human toxicological risk that can lead to carcinogenic and neurological diseases. A selective, sensitive, and reliable OTA biodetection approach is essential to ensure food safety. Current detection approaches rely on accurate and time-consuming laboratory techniques performed at the end of the food production process, or lateral-flow technologies that are rapid and on-site, but do not provide quantitative and precise OTA concentration measurements. Nanoengineered optical biosensors arise as an avant-garde solution, providing high sensing performance, and a fast and accurate OTA biodetection screening, which is attractive for the industrial market. This review core presents and discusses the recent advancements in optical OTA biosensing, considering engineered nanomaterials, optical transduction principle and biorecognition methodologies. Finally, the major challenges and future trends are discussed, and current patented OTA optical biosensors are emphasized for a particular promising detection method.

3.
Biosensors (Basel) ; 12(11)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36354460

ABSTRACT

Currently, there is an increasing need to develop highly sensitive plasmonic sensors able to provide good biocompatibility, flexibility, and optical stability to detect low levels of analytes in biological media. In this study, gold nanoparticles (Au NPs) were dispersed into chitosan membranes by spin coating. It has been demonstrated that these membranes are particularly stable and can be successfully employed as versatile plasmonic platforms for molecular sensing. The optical response of the chitosan/Au NPs interfaces and their capability to sense the medium's refractive index (RI) changes, either in a liquid or gas media, were investigated by high-resolution localized surface plasmon resonance (HR-LSPR) spectroscopy, as a proof of concept for biosensing applications. The results revealed that the lowest polymer concentration (chitosan (0.5%)/Au-NPs membrane) presented the most suitable plasmonic response. An LSPR band redshift was observed as the RI of the surrounding media was incremented, resulting in a sensitivity value of 28 ± 1 nm/RIU. Furthermore, the plasmonic membrane showed an outstanding performance when tested in gaseous atmospheres, being capable of distinguishing inert gases with only a 10-5 RI unit difference. The potential of chitosan/Au-NPs membranes was confirmed for application in LSPR-based sensing applications, despite the fact that further materials optimization should be performed to enhance sensitivity.


Subject(s)
Chitosan , Metal Nanoparticles , Gold/chemistry , Metal Nanoparticles/chemistry , Surface Plasmon Resonance/methods , Refractometry
4.
Adv Exp Med Biol ; 1379: 259-273, 2022.
Article in English | MEDLINE | ID: mdl-35760995

ABSTRACT

Cancer is the second leading cause of death worldwide, and its survival rate is significantly affected by early detection and treatment. However, most current diagnostic methods are symptoms oriented, and detecting cancer only in advanced phases. The few existent screening methods, such as mammograms and papanicolaou tests are invasive and not continuous, resulting in a high percentage of non-detected cancers in the early phases. Thus, there is an urgent need to create technologies that make cancer diagnostics more accessible to populations, enabling continuous or semi-continuous, noninvasive, "long-term" screening of cancer in high-risk patients and the whole population. Biosensors are being developed to create technologies that can be applied to point-of-care, wearable, and implantable diagnostics, aiming to fill this important gap in cancer early detection, and, therefore, increase the cancer rate of survival and reduce its morbidity. The versatility of these technologies, due to their miniaturization and diverse detection modes, will enable great advances in cancer early detection, since they can be adapted to the patient and its context, allowing personalized medicine to become a reality.


Subject(s)
Biosensing Techniques , Neoplasms , Early Detection of Cancer/methods , Humans , Mammography , Neoplasms/diagnosis , Neoplasms/therapy
5.
ACS Sens ; 6(7): 2682-2690, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34138534

ABSTRACT

The performance of biosensors is often optimized in buffers, which brings inconsistencies during applications with biological samples. Current strategies for minimizing sample (matrix) interference are complex to automate and miniaturize, involving, e.g., sample dilution or recovery of serum/plasma. This study shows the first systematic analysis using hundreds of actual microfluidic immunoassay fluoropolymer strips to understand matrix interference in microflow systems. As many interfering factors are assay-specific, we have explored matrix interference for a range of enzymatic immunoassays, including a direct mIgG/anti-mIgG, a sandwich cancer biomarker PSA, and a sandwich inflammatory cytokine IL-1ß. Serum matrix interference was significantly affected by capillary antibody surface coverage, suggesting for the first time that the main cause of the serum matrix effect is low-affinity serum components (e.g., autoantibodies) competing with high-affinity antigens for the immobilized antibody. Additional experiments carried out with different capillary diameters confirmed the importance of antibody surface coverage in managing matrix interference. Building on these findings, we propose a novel analytical approach where antibody surface coverage and sample incubation times are key for eliminating and/or minimizing serum matrix interference, consisting in bioassay optimization carried out in serum instead of buffer, without compromising the performance of the bioassay or adding extra cost or steps. This will help establishing a new route toward faster development of modern point-of-care tests and effective biosensor development.


Subject(s)
Biosensing Techniques , Microfluidics , Antibodies , Immunoassay , Point-of-Care Testing
6.
Biosensors (Basel) ; 10(7)2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32708103

ABSTRACT

Biosensors devices have attracted the attention of many researchers across the world. They have the capability to solve a large number of analytical problems and challenges. They are future ubiquitous devices for disease diagnosis, monitoring, treatment and health management. This review presents an overview of the biosensors field, highlighting the current research and development of bio-integrated and implanted biosensors. These devices are micro- and nano-fabricated, according to numerous techniques that are adapted in order to offer a suitable mechanical match of the biosensor to the surrounding tissue, and therefore decrease the body's biological response. For this, most of the skin-integrated and implanted biosensors use a polymer layer as a versatile and flexible structural support, combined with a functional/active material, to generate, transmit and process the obtained signal. A few challenging issues of implantable biosensor devices, as well as strategies to overcome them, are also discussed in this review, including biological response, power supply, and data communication.


Subject(s)
Biosensing Techniques , Wearable Electronic Devices , Humans
7.
Mater Sci Eng C Mater Biol Appl ; 100: 424-432, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30948078

ABSTRACT

This work reports on the development of a label-free immunosensor technology, based on nanoplasmonic Au-TiO2 thin films. The Au-TiO2 thin films were prepared by cost-effective reactive DC magnetron sputtering, followed by a thermal annealing procedure. The latter promoted the growth of the Au nanoparticles throughout the TiO2 matrix and induced some morphological changes, which are the base for the immunosensor device functionality. A posterior plasma etching treatment was required to partially expose the nanoparticles to the biological environment. It gave rise to a 6-fold increase of the total area of gold exposed, allowing further possibilities for the sensor sensitivity enhancement. Experimental results demonstrated the successful functionalization of the films' surface with antibodies, with the immobilization occurring preferentially in the exposed nanoparticles and negligibly on the TiO2 matrix. Antibody adsorption surface coverage studies revealed antibody low affinity to the film's surface. Nevertheless, immunoassay development experiments showed a strong and active immobilized antibody monolayer at an optimized antibody concentration. This allowed a 236 signal-to-noise-ratio in a confocal microscope, using mouse IgG and 100 ng/ml of Fab-specific anti-mouse IgG-FITC conjugated. Label-free detection of the optimized antibody monolayer on Au-TiO2 thin films was also tested, revealing an expected redshift in the LSPR band, which demonstrates the suitability for the development of cost-effective, label-free LSPR based immunosensor devices.


Subject(s)
Biosensing Techniques/methods , Gold/chemistry , Immunoassay/methods , Staining and Labeling , Titanium/chemistry , Adsorption , Animals , Antibodies/metabolism , Immobilized Proteins/metabolism , Mice , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Optical Phenomena , Surface Properties
8.
Biosens Bioelectron ; 130: 20-39, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30716590

ABSTRACT

Cardiovascular diseases, cancer, and diabetes are high mortality diseases, which account for almost two thirds of all deaths worldwide. Their early detection and continuous evaluation are fundamental for an improved patient prognosis and reduced socioeconomic impact. Current biosensor technologies are typically based on the analysis of whole blood samples from patients for the detection of disease-specific biomarkers. However, these technologies display serious shortcomings, such as reduced sensitivity and dynamic range, limited in vivo applicability, and lack of continuous monitoring. There is the urgent need for new diagnostic and treatment follow-up tools, which allow for the early detection of the pathology as well as for the continuous monitoring of the physiological responses to specific therapies. During the last years, a new generation of biosensor technologies with improved performance has emerged in the biomedical sector. The combination of advanced biomaterial methods, biochemical tools, and micro/nanotechnology approaches has resulted in the development of innovative three-dimensional (3D) biosensor platforms for advanced medical diagnosis. In this review, we report the most recent advances in the field of 3D biosensors for clinical applications, focusing on the diagnosis and monitoring of cardiovascular diseases, cancer, and diabetes. We discuss about their clinical performance compared to standard biosensor technologies, their implantable capability, and their integration into microfluidic devices to develop clinically-relevant models. Overall, we anticipate that 3D biosensors will drive us toward a new paradigm in medical diagnosis, resulting in real-time in vivo biosensors capable to significantly improve patient prognosis.


Subject(s)
Biosensing Techniques/trends , Cardiovascular Diseases/diagnosis , Diabetes Mellitus/diagnosis , Neoplasms/diagnosis , Early Detection of Cancer/trends , Humans , Lab-On-A-Chip Devices/trends , Nanotechnology/trends
9.
Bionanoscience ; 7(4): 718-726, 2017.
Article in English | MEDLINE | ID: mdl-29214121

ABSTRACT

Rapid and quantitative prostate-specific antigen (PSA) biomarker detection would be beneficial to cancer diagnostics, improving early detection and therefore increasing chances of survival. Nanoparticle-based detection is routinely used in one-step nitrocellulose-based lateral flow (LF) immunoassays; however, it is well established within the scientific diagnostic community that LF technology lacks sensitivity for measuring biomarkers, such as prostate-specific antigen (PSA). A trend in point-of-care (POC) protein biomarker quantitation is the miniaturization of immunoassays in microfluidic devices. This work aimed at testing the feasibility of carbon and gold nanoparticles as immunoassay labels for PSA detection with cost-effective optical detection in a novel microfluidic POC platform called microcapillary film (MCF), consisting of a parallel array of fluoropolymer microcapillaries with 200-µm internal diameter. With neutravidin-coated carbon, nanoparticles were able to quantify an immobilized biotinylated monoclonal antibody (coating solution from 10 to 40 µg/ml) and PSA was successfully quantified in a sandwich assay using silver-enhanced gold nanoparticles and a flatbed scanner; yet, the dynamic range was limited to 10-100 ng/ml. Although direct optical detection of PSA without enzymatic amplification or fluorophores is possible and technically appealing for the simplified fluidics and signal scanning setups involved, ultimately, the binding of a thin layer of nanoparticles onto the wall of transparent microcapillaries is not sufficient to cause a significant drop on the optical colorimetric signal. Future studies will explore the use of fluorescence nanoparticles.

10.
Analyst ; 142(6): 858-882, 2017 Mar 13.
Article in English | MEDLINE | ID: mdl-28217778

ABSTRACT

The latest clinical procedures for the timely and cost-effective diagnosis of chronic and acute clinical conditions, such as cardiovascular diseases, cancer, chronic respiratory diseases, diabetes or sepsis (i.e. the biggest causes of death worldwide), involve the quantitation of specific protein biomarkers released into the blood stream or other physiological fluids (e.g. urine or saliva). The clinical thresholds are usually in the femtomolar to picolomar range, and consequently the measurement of these protein biomarkers heavily relies on highly sophisticated, bulky and automated equipment in centralised pathology laboratories. The first microfluidic devices capable of measuring protein biomarkers in miniaturised immunoassays were presented nearly two decades ago and promised to revolutionise point-of-care (POC) testing by offering unmatched sensitivity and automation in a compact POC format; however, the development and adoption of microfluidic protein biomarker tests has fallen behind expectations. This review presents a detailed critical overview into the pipeline of microfluidic devices developed in the period 2005-2016 capable of measuring protein biomarkers from the pM to fM range in formats compatible with POC testing, with a particular focus on the use of affordable microfluidic materials and compact low-cost signal interrogation. The integration of these two important features (essential unique selling points for the successful microfluidic diagnostic products) has been missed in previous review articles and explain the poor adoption of microfluidic technologies in this field. Most current miniaturised devices compromise either on the affordability, compactness and/or performance of the test, making current tests unsuitable for the POC measurement of protein biomarkers. Seven core technical areas, including (i) the selected strategy for antibody immobilisation, (ii) the surface area and surface-area-to-volume ratio, (iii) surface passivation, (iv) the biological matrix interference, (v) fluid control, (vi) the signal detection modes and (vii) the affordability of the manufacturing process and detection system, were identified as the key to the effective development of a sensitive and affordable microfluidic protein biomarker POC test.


Subject(s)
Biomarkers/analysis , Immunoassay , Lab-On-A-Chip Devices , Point-of-Care Systems , Humans , Microfluidic Analytical Techniques
11.
Analyst ; 142(6): 959-968, 2017 Mar 13.
Article in English | MEDLINE | ID: mdl-28232992

ABSTRACT

This study reports for the first time the sensitive colorimetric and fluorescence detection of clinically relevant protein biomarkers by sandwich immunoassays using the covalent immobilisation of antibodies onto the fluoropolymer surface inside Teflon®-FEP microfluidic devices. Teflon®-FEP has outstanding optical transparency ideal for high-sensitivity colorimetric and fluorescence bioassays, however this thermoplastic is regarded as chemically inert and very hydrophobic. Covalent immobilisation can offer benefits over passive adsorption to plastic surfaces by allowing better control over antibody density, orientation and analyte binding capacity, and so we tested a range of different and novel covalent immobilisation strategies. We first functionalised the inner surface of a 10-bore, 200 µm internal diameter FEP microcapillary film with high-molecular weight polyvinyl alcohol (PVOH) without changing the outstanding optical transparency of the device delivered by the matched refractive index of FEP and water. Glutaraldehyde immobilisation was compared with the use of photoactivated linkers and NHS-ester crosslinkers for covalently immobilising capture antibodies onto PVOH. Three clinically relevant sandwich ELISAs were tested against the cytokine IL-1ß, the myocardial infarct marker cardiac troponin I (cTnI), and the chronic heart failure marker brain natriuretic peptide (BNP). Overall, glutaraldehyde immobilisation was effective for BNP assays, but yielded unacceptable background for IL-1ß and cTnI assays caused by direct binding of the biotinylated detection antibody to the modified PVOH surface. We found NHS-ester groups reacted with APTES-treated PVOH coated fluoropolymers. This facilitated a novel method for capture antibody immobilisation onto fluoropolymer devices using a bifunctional NHS-maleimide crosslinker. The density of covalently immobilised capture antibodies achieved using PVOH/APTES/NHS/maleimide approached levels seen with passive adsorption, and sensitive and quantitative assay performance was achieved using this method. Overall, the PVOH coating provided an excellent surface for controlled covalent antibody immobilisation onto Teflon®-FEP for performing high-sensitivity immunoassays.


Subject(s)
Antibodies, Immobilized/chemistry , Biomarkers/analysis , Immunoassay , Lab-On-A-Chip Devices , Polytetrafluoroethylene , Colorimetry , Humans , Interleukin-1beta/analysis , Natriuretic Peptide, Brain/analysis , Troponin I/analysis
12.
Analyst ; 140(16): 5609-18, 2015 Aug 21.
Article in English | MEDLINE | ID: mdl-26120601

ABSTRACT

Sensitive quantitation of multiple cytokines can provide important diagnostic information during infection, inflammation and immunopathology. In this study sensitive immunoassay detection of human cytokines IL-1ß, IL-6, IL-12p70 and TNFα is shown for singleplex and multiplex formats using a novel miniaturized ELISA platform. The platform uses a disposable plastic multi-syringe aspirator (MSA) integrating 8 disposable fluoropolymer microfluidic test strips, each containing an array of ten 200 µm mean i.d. microcapillaries coated with a set of monoclonal antibodies. Each MSA device thus performs 10 tests on 8 samples, delivering 80 measurements. Unprecedented levels of sensitivity were obtained with the novel fluoropolymer microfluidic material and simple colorimetric detection in a flatbed scanner. The limit of detection for singleplex detection ranged from 2.0 to 15.0 pg ml(-1), i.e. 35 and 713 femtomolar for singleplex cytokine detection, and the intra- and inter-assay coefficient of variation (CV) remained within 10%. In addition, a triplex immunoassay was developed for measuring IL-1ß, IL-12p70 and TNFα simultaneously from a given sample in the pg ml(-1) range. These assays permit high sensitivity measurement with rapid <15 min assay or detection from undiluted blood serum. The portability, speed and low-cost of this system are highly suited to point-of-care testing and field diagnostics applications.


Subject(s)
Blood Chemical Analysis/methods , Cytokines/blood , Polymers/chemistry , Colorimetry , Enzyme-Linked Immunosorbent Assay , Fluorine/chemistry , Humans , Limit of Detection , Surface Properties , Time Factors
13.
Biosens Bioelectron ; 70: 5-14, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-25775968

ABSTRACT

We present a new, power-free and flexible detection system named MCFphone for portable colorimetric and fluorescence quantitative sandwich immunoassay detection of prostate specific antigen (PSA). The MCFphone is composed by a smartphone integrated with a magnifying lens, a simple light source and a miniaturised immunoassay platform, the Microcapillary Film (MCF). The excellent transparency and flat geometry of fluoropolymer MCF allowed quantitation of PSA in the range 0.9 to 60 ng/ml with<7% precision in 13 min using enzymatic amplification and a chromogenic substrate. The lower limit of detection was further improved from 0.4 to 0.08 ng/ml in whole blood samples with the use of a fluorescence substrate. The MCFphone has shown capable of performing rapid (13 to 22 min total assay time) colorimetric quantitative and highly sensitive fluorescence tests with good %Recovery, which represents a major step in the integration of a new generation of inexpensive and portable microfluidic devices with commercial immunoassay reagents and off-the-shelf smartphone technology.


Subject(s)
Fluoroimmunoassay/instrumentation , Lab-On-A-Chip Devices , Prostate-Specific Antigen/blood , Prostatic Neoplasms/blood , Prostatic Neoplasms/diagnosis , Smartphone , Biomarkers, Tumor/blood , Biosensing Techniques/instrumentation , Colorimetry/instrumentation , Diagnosis, Computer-Assisted/methods , Equipment Design , Equipment Failure Analysis , Humans , Male , Miniaturization , Mobile Applications , Point-of-Care Testing , Reproducibility of Results , Sensitivity and Specificity , Telemedicine/instrumentation
14.
Lab Chip ; 14(16): 2918-28, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-24989886

ABSTRACT

We present a new concept for rapid and fully portable prostate specific antigen (PSA) measurements, termed "lab-in-a-briefcase", which integrates an affordable microfluidic ELISA platform utilising a melt-extruded fluoropolymer microcapillary film (MCF) containing an array of 10 200 µm internal diameter capillaries, a disposable multi-syringe aspirator (MSA), a sample tray pre-loaded with all of the required immunoassay reagents, and a portable film scanner for colorimetric signal digital quantification. Each MSA can perform 10 replicate microfluidic immunoassays on 8 samples, allowing 80 measurements to be made in less than 15 minutes based on semi-automated operation, without the need of additional fluid handling equipment. The assay was optimised for the measurement of a clinically relevant range of PSA of 0.9 to 60.0 ng ml(-1) in 15 minutes with CVs on the order of 5% based on intra-assay variability when read using a consumer flatbed film scanner. The PSA assay performance in the MSA remained robust in undiluted or 1 : 2 diluted human serum or whole blood, and the matrix effect could simply be overcome by extending sample incubation times. The PSA "lab-in-a-briefcase" is particularly suited to a low-resource health setting, where diagnostic labs and automated immunoassay systems are not accessible, by allowing PSA measurement outside the laboratory using affordable equipment.


Subject(s)
Enzyme-Linked Immunosorbent Assay/instrumentation , Enzyme-Linked Immunosorbent Assay/methods , Microfluidic Analytical Techniques/instrumentation , Prostate-Specific Antigen/blood , Humans , Kinetics , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...