Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Lasers Med Sci ; 31(1): 49-56, 2016 Jan.
Article En | MEDLINE | ID: mdl-26510575

The aim of this study was to evaluate the effects of simulated pulpal pressure (SPP) on the variation of intrapulpal temperature (ΔT) and microtensile bond strength (µTBS) to dentin submitted to an adhesive technique using laser irradiation. One hundred sound human molars were randomly divided into two groups (n = 50), according to the presence or absence of SPP (15 cm H2O). Each group was divided into five subgroups (n = 10) according to Nd:YAG laser energy (60, 80, 100, 120, 140 mJ/pulse). The samples were sequentially treated with the following: 37 % phosphoric acid, adhesive (Scotchbond Universal), irradiation with Nd:YAG laser (60 s), and light curing (10 s). ΔT was evaluated during laser irradiation using a type K thermocouple. Next, a composite resin block was build up onto the irradiated area. After 48 h, samples were submitted to microtensile test (10 kgf load cell, 0.5 mm/min). Data were analyzed by two-way ANOVA and Tukey tests (p = 0.05). ANOVA revealed significant differences for ΔT and TBS in the presence of SPP. For ΔT, the highest mean (14.3 ± 3.23 °C)(A) was observed in 140 mJ and without SPP. For µTBS, the highest mean (33.4 ± 4.15 MPa)(A) was observed in 140 mJ and without SPP. SPP significantly reduced both ΔT and µTBS during adhesive procedures, lower laser energy parameters resulted in smaller ΔT, and the laser parameters did not influence the µTBS values.


Dental Pulp , Dentin/chemistry , Dentin/radiation effects , Lasers, Solid-State , Pressure , Temperature , Adhesiveness , Composite Resins/chemistry , Curing Lights, Dental , Humans , Tensile Strength
2.
Oper Dent ; 40(3): E122-31, 2015.
Article En | MEDLINE | ID: mdl-25706613

OBJECTIVES: This study evaluated the durability of bond strength to enamel using total-etch (Single Bond/SB) and self-etch (Clearfil SE Bond/CSEB) adhesives associated with neodymium:yttrium-aluminu-garnet (Nd:YAG) laser irradiation through the uncured adhesives. METHODS: Bovine incisors were worn to expose an area of enamel and were divided into four groups: group 1 (control) SB + polymerization; group 2 (control) CSEB + polymerization; group 3 (laser) - SB + Nd:YAG laser (174.16 J/cm(2)) + polymerization; and group 4 (laser) CSEB + Nd:YAG (174.16 J/cm(2)) + polymerization. Blocks of composite were fabricated and stored for 24 hours or 12 months, sectioned into beams, and submitted to microtensile tests. Results were analyzed by three-way analysis of variance (ANOVA) (adhesive, technique, and storage time) and Tukey tests. RESULTS: ANOVA revealed significant differences for adhesive × technique and technique × storage time (p<0.05). The mean values (MPa) for interaction adhesive × technique (standard deviation) were as follows: SB/control = 35.78 (6.04)a; SB/laser = 26.40 (7.25)b, CSEB/control = 26.32 (5.71)b, CSEB/laser = 23.90 (7.49)b. For interaction technique × storage time the mean values were as follows: control/24 hours = 32.58 (6.49)a; control/12 months = 29.52 (8.38)a; laser/24 hours = 29.37 (5.71)a; laser/12 months = 20.92 (6.5)b. Groups with the same letters showed no statistically significant differences. CONCLUSION: Scanning electron microscope analysis showed evident areas of micromorphological alterations in lased samples after 12 months of water storage. Nd:YAG laser irradiation of enamel through unpolymerized total-etch adhesive significantly reduced bond strength compared with the control. Bond strength decreased when enamel samples irradiated with Nd:YAG laser through unpolymerized adhesives were stored in water for 12 months.


Dental Bonding/methods , Dental Enamel/metabolism , Light-Curing of Dental Adhesives/methods , Animals , Bisphenol A-Glycidyl Methacrylate/therapeutic use , Cattle , Dental Bonding/standards , Dental Stress Analysis , Laser Therapy , Light-Curing of Dental Adhesives/standards , Longitudinal Studies , Resin Cements/therapeutic use , Tensile Strength
3.
Oper Dent ; 38(6): 635-43, 2013.
Article En | MEDLINE | ID: mdl-23327234

OBJECTIVE: This study evaluated the influence of different surface treatments on the resin bond strength/light-cured characterizing materials (LCCMs), using the intrinsic characterization technique. The intrinsic technique is characterized by the use of LCCMs between the increments of resin composite (resin/thin film of LCCM/external layer of resin covering the LCCM). MATERIALS AND METHODS: Using a silicone matrix, 240 blocks of composite (Z350/3M ESPE) were fabricated. The surfaces received different surface treatments, totaling four groups (n=60): Group C (control group), no surface treatment was used; Group PA, 37% phosphoric acid for one minute and washing the surface for two minutes; Group RD, roughening with diamond tip; and Group AO, aluminum oxide. Each group was divided into four subgroups (n=15), according to the LCCMs used: Subgroup WT, White Tetric Color pigment (Ivoclar/Vivadent) LCCM; Subgroup BT, Black Tetric Color pigment (Ivoclar/Vivadent) LCCM; Subgroup WK, White Kolor Plus pigment (Kerr) LCCM; Subgroup BK, Brown Kolor Plus pigment (Kerr) LCCM. All materials were used according to the manufacturer's instructions. After this, block composites were fabricated over the LCCMs. Specimens were sectioned and submitted to microtensile testing to evaluate the bond strength at the interface. Data were submitted to two-way analysis of variance (ANOVA) (surface treatment and LCCMs) and Tukey tests. RESULTS: ANOVA presented a value of p<0.05. The mean values (±SD) for the factor surface treatment were as follows: Group C, 30.05 MPa (±5.88)a; Group PA, 23.46 MPa (±5.45)b; Group RD, 21.39 MPa (±6.36)b; Group AO, 15.05 MPa (±4.57)c. Groups followed by the same letters do not present significant statistical differences. The control group presented significantly higher bond strength values than the other groups. The group that received surface treatment with aluminum oxide presented significantly lower bond strength values than the other groups. CONCLUSION: Surface treatments of composite with phosphoric acid, diamond tip, and aluminum oxide significantly diminished the bond strength between composite and the LCCMs.


Composite Resins/therapeutic use , Light-Curing of Dental Adhesives/methods , Tooth Preparation/methods , Cell Surface Extensions , Dental Stress Analysis , Humans , Tensile Strength
4.
Oper Dent ; 38(3): 258-66, 2013.
Article En | MEDLINE | ID: mdl-23110580

OBJECTIVE: The aim of this study was to evaluate the two-year clinical performance of Class III, IV, and V composite restorations using a two-step etch-and-rinse adhesive system (2-ERA) and three one-step self-etching adhesive systems (1-SEAs). MATERIAL AND METHODS: Two hundred Class III, IV, and V composite restorations were placed into 50 patients. Each patient received four composite restorations (Amaris, Voco), and these restorations were bonded with one of three 1-SEAs (Futurabond M, Voco; Clearfil S3 Bond, Kuraray; and Optibond All-in-One, Kerr) or one 2-ERA (Adper Single Bond 2/3M ESPE). The four adhesive systems were evaluated at baseline and after 24 months using the following criteria: restoration retention, marginal integrity, marginal discoloration, caries occurrence, postoperative sensitivity and preservation of tooth vitality. After two years, 162 restorations were evaluated in 41 patients. Data were analyzed using the χ(2) test (p<0.05). RESULTS: There were no statistically significant differences between the 2-ERA and the 1-SEAs regarding the evaluated parameters (p>0.05). CONCLUSION: The 1-SEAs showed good clinical performance at the end of 24 months.


Composite Resins/chemistry , Dental Materials/chemistry , Dental Restoration, Permanent/classification , Acid Etching, Dental/classification , Adolescent , Adult , Aged , Color , Dental Bonding , Dental Caries/etiology , Dental Cements/chemistry , Dental Marginal Adaptation , Dental Pulp/physiology , Dentin Sensitivity/etiology , Dentin-Bonding Agents/chemistry , Follow-Up Studies , Humans , Methacrylates/chemistry , Middle Aged , Nanocomposites/chemistry , Resin Cements/chemistry , Surface Properties , Young Adult
5.
Oper Dent ; 38(4): 447-55, 2013.
Article En | MEDLINE | ID: mdl-23215546

PURPOSE: The aim of this study was to investigate the influence of Nd:YAG laser on the shear bond strength to enamel and dentin of total and self-etch adhesives when the laser was applied over the adhesives, before they were photopolymerized, in an attempt to create a new bonding layer by dentin-adhesive melting. MATERIAL AND METHODS: One-hundred twenty bovine incisors were ground to obtain flat surfaces. Specimens were divided into two substrate groups (n=60): substrate E (enamel) and substrate D (dentin). Each substrate group was subdivided into four groups (n=15), according to the surface treatment accomplished: X (Xeno III self-etching adhesive, control), XL (Xeno III + laser Nd:YAG irradiation at 140 mJ/10 Hz for 60 seconds + photopolymerization, experimental), S (acid etching + Single Bond conventional adhesive, Control), and SL (acid etching + Single Bond + laser Nd:YAG at 140 mJ/10 Hz for 60 seconds + photopolymerization, experimental). The bonding area was delimited with 3-mm-diameter adhesive tape for the bonding procedures. Cylinders of composite were fabricated on the bonding area using a Teflon matrix. The teeth were stored in water at 37°C/48 h and submitted to shear testing at a crosshead speed of 0.5 mm/min in a universal testing machine. Results were analyzed with three-way analysis of variance (ANOVA; substrate, adhesive, and treatment) and Tukey tests (α=0.05). ANOVA revealed significant differences for the substrate, adhesive system, and type of treatment: lased or unlased (p<0.05). The mean shear bond strength values (MPa) for the enamel groups were X=20.2 ± 5.61, XL=23.6 ± 4.92, S=20.8 ± 4.55, SL=22.1 ± 5.14 and for the dentin groups were X=14.1 ± 7.51, XL=22.2 ± 6.45, S=11.2 ± 5.77, SL=15.9 ± 3.61. For dentin, Xeno III self-etch adhesive showed significantly higher shear bond strength compared with Single Bond total-etch adhesive; Nd:YAG laser irradiation showed significantly higher shear bond strength compared with control (unlased). CONCLUSION: Nd:YAG laser application prior to photopolymerization of adhesive systems significantly increased the bond strength to dentin.


Dental Bonding , Dental Enamel/ultrastructure , Dentin-Bonding Agents/radiation effects , Dentin/ultrastructure , Lasers, Solid-State , Acid Etching, Dental/methods , Animals , Bisphenol A-Glycidyl Methacrylate/chemistry , Bisphenol A-Glycidyl Methacrylate/radiation effects , Cattle , Composite Resins/chemistry , Dental Materials/chemistry , Dental Stress Analysis/instrumentation , Dentin-Bonding Agents/chemistry , Light-Curing of Dental Adhesives/instrumentation , Light-Curing of Dental Adhesives/methods , Materials Testing , Phosphoric Acids/chemistry , Polymerization , Radiation Dosage , Shear Strength , Stress, Mechanical , Temperature , Time Factors , Water/chemistry
...