Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurol ; 271(7): 4513-4528, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38709305

ABSTRACT

INTRODUCTION: Impaired motor function is a major cause of disability in multiple sclerosis (MS), involving various neuroplasticity processes typically assessed by neuroimaging. This study aimed to determine whether navigated transcranial magnetic stimulation (nTMS) could also provide biomarkers of motor cortex plasticity in patients with MS (pwMS). METHODS: nTMS motor mapping was performed for hand and leg muscles bilaterally. nTMS variables included the amplitude and latency of motor evoked potentials (MEPs), corticospinal excitability measures, and the size of cortical motor maps (CMMs). Clinical assessment included disability (Expanded Disability Status Scale, EDSS), strength (MRC scale, pinch and grip), and dexterity (9-hole Pegboard Test). RESULTS: nTMS motor mapping was performed in 68 pwMS. PwMS with high disability (EDSS ≥ 3) had enlarged CMMs with less dense distribution of MEPs and various MEP parameter changes compared to pwMS with low disability (EDSS < 3). Patients with progressive MS had also various MEP parameter changes compared to pwMS with relapsing remitting form. MRC score correlated positively with MEP amplitude and negatively with MEP latency, pinch strength correlated negatively with CMM volume and dexterity with MEP latency. CONCLUSIONS: This is the first study to perform 4-limb cortical motor mapping in pwMS using a dedicated nTMS procedure. By quantifying the cortical surface representation of a given muscle and the variability of MEP within this representation, nTMS can provide new biomarkers of motor function impairment in pwMS. Our study opens perspectives for the use of nTMS as an objective method for assessing pwMS disability in clinical practice.


Subject(s)
Evoked Potentials, Motor , Motor Cortex , Multiple Sclerosis , Transcranial Magnetic Stimulation , Humans , Male , Female , Middle Aged , Adult , Evoked Potentials, Motor/physiology , Motor Cortex/physiopathology , Motor Cortex/diagnostic imaging , Multiple Sclerosis/physiopathology , Multiple Sclerosis/diagnostic imaging , Brain Mapping , Disability Evaluation , Hand/physiopathology , Muscle, Skeletal/physiopathology , Muscle, Skeletal/diagnostic imaging , Electromyography , Multiple Sclerosis, Relapsing-Remitting/physiopathology , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Neuronal Plasticity/physiology
2.
Clin Neurophysiol ; 162: 174-200, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643612

ABSTRACT

OBJECTIVE: Electroencephalography (EEG) can highlight significant changes in spontaneous electrical activity of the brain produced by altered brain network connectivity linked to inflammatory demyelinating lesions and neuronal loss occurring in multiple sclerosis (MS). In this review, we describe the main EEG findings reported in the literature to characterize motor network alteration in term of local activity or functional connectivity changes in patients with MS (pwMS). METHODS: A comprehensive literature search was conducted to include articles with quantitative analyses of resting-state EEG recordings (spectrograms or advanced methods for assessing spatial and temporal dynamics, such as coherence, theory of graphs, recurrent quantification, microstates) or dynamic EEG recordings during a motor task, with or without connectivity analyses. RESULTS: In this systematic review, we identified 26 original articles using EEG in the evaluation of MS-related motor disorders. Various resting or dynamic EEG parameters could serve as diagnostic biomarkers of motor control impairment to differentiate pwMS from healthy subjects or be related to a specific clinical condition (fatigue) or neuroradiological aspects (lesion load). CONCLUSIONS: We highlight some key EEG patterns in pwMS at rest and during movement, both suggesting an alteration or disruption of brain connectivity, more specifically involving sensorimotor networks. SIGNIFICANCE: Some of these EEG biomarkers of motor disturbance could be used to design future therapeutic strategies in MS based on neuromodulation approaches, or to predict the effects of motor training and rehabilitation in pwMS.


Subject(s)
Electroencephalography , Multiple Sclerosis , Humans , Multiple Sclerosis/physiopathology , Multiple Sclerosis/diagnosis , Electroencephalography/methods , Motor Disorders/physiopathology , Motor Disorders/diagnosis , Motor Disorders/etiology , Motor Disorders/therapy , Brain/physiopathology , Brain/diagnostic imaging , Nerve Net/physiopathology , Nerve Net/diagnostic imaging
3.
Mult Scler Relat Disord ; 86: 105601, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604003

ABSTRACT

BACKGROUND: Motor preparation and execution can be impaired in patients with multiple sclerosis (pwMS). These neural processes can be assessed using electroencephalography (EEG). During a self-paced movement, EEG signal amplitude decreases before movement (event-related desynchronization, ERD) and increases after movement (event-related synchronization, ERS). OBJECTIVE: To reappraise ERD/ERS changes in pwMS compared to healthy controls (HC). METHODS: This single-center study included 13 pwMS and 10 sex/age-matched HC. 60-channel EEG was recorded during two self-paced movements of the right hand: a simple index finger extension task and a more complex finger tapping task. Clinical variables included MS type, sex, age, disease duration, disability, grip strength, fatigue and attentional performance. EEG variables included ERD and ERS onset latency, duration, and amplitude determined using two methods of signal analyses (based on visual or automated determination) in the alpha and beta frequency bands in five cortical regions: right and left frontocentral and centroparietal regions and a midline region. Neuroimaging variables included the volumes of four deep brain structures (thalamus, putamen, pallidum and caudate nucleus) and the relative lesion load. RESULTS: ERD/ERS changes in pwMS compared to HC were observed only in the beta band. In pwMS, beta-ERD had a delayed onset in the midline and right parietocentral regions and a shortened duration or increased amplitude in the parietocentral region; beta-ERS had a shorter duration, delayed onset, or reduced amplitude in the left parieto/frontocentral region. In addition, pwMS with a more delayed beta-ERD in the midline region had less impaired executive functions but increased caudate nuclei volume, while pwMS with a more delayed beta-ERS in the parietocentral region contralateral to the movement had less fatigue but increased thalami volume. CONCLUSION: This study confirms an alteration of movement preparation and execution in pwMS, mainly characterized by a delayed cortical activation (ERD) and a delayed and reduced post-movement inhibition (ERS) in the beta band. Compensatory mechanisms could be involved in these changes, associating more preserved clinical performance and overactivation of deep brain structures.


Subject(s)
Electroencephalography , Humans , Male , Female , Adult , Middle Aged , Multiple Sclerosis/physiopathology , Multiple Sclerosis/diagnostic imaging , Cortical Synchronization/physiology , Brain/physiopathology , Brain/diagnostic imaging , Psychomotor Performance/physiology
4.
Eur J Neurol ; 31(7): e16285, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38511878

ABSTRACT

BACKGROUND AND PURPOSE: Peripheral neuropathy is a frequent complication of brentuximab vedotin (BV), used in CD30+ lymphoma treatment. Classic BV-induced neuropathy (BV-CN) is a mild distal sensory axonal polyneuropathy. Severe BV-induced inflammatory neuropathies (BV-IN) have been described. BV-IN contribute to lymphoma-associated morbidity but might be immunotherapy-responsive. Our primary objective was to evaluate the rate of BV-IN. Our secondary objectives were to determine risk factors and warning signs. METHODS: We conducted a retrospective cohort study on all patients treated with BV at our center between April 2014 and September 2021. Clinical, biological, and electrophysiological data were collected. BV-induced neuropathy was defined as the occurrence of neuropathy up to 3 months after BV discontinuation. BV-IN was defined with criteria adapted from European Academy of Neurology/Peripheral Nerve Society 2021 electrodiagnostic criteria for chronic inflammatory demyelinating polyradiculoneuropathy. Other neuropathies were classified as BV-CN. RESULTS: Among 83 patients, 41 (49%) developed neuropathy: 35 BV-CN and 6 BV-IN. Thus, the rate of BV-IN was 7.2%. Compared to patients with BV-CN, no predisposing factor was identified. However, patients with BV-IN more frequently presented muscle weakness (67% vs. 5.7%, p < 0.05), gait disorders (83% vs. 20%, p < 0.05), or acute or subacute onset (67% vs. 14%, p < 0.05). BV-IN was frequently more severe (Common Terminology Criteria for Adverse Events grade ≥3; 50% vs. 0%, p < 0.05). Four patients were treated with immunotherapy. CONCLUSIONS: Brentuximab vedotin-induced neuropathy is an overlooked complication. Based on four easily identifiable "red flags", we provide an algorithm to help non-neurologist physicians that care for BV-treated patients to detect BV-IN. The aim of the algorithm is to decrease the diagnostic and management delay of this disabling neuropathy.


Subject(s)
Antineoplastic Agents, Immunological , Brentuximab Vedotin , Peripheral Nervous System Diseases , Humans , Male , Brentuximab Vedotin/adverse effects , Female , Middle Aged , Retrospective Studies , Aged , Antineoplastic Agents, Immunological/adverse effects , Peripheral Nervous System Diseases/chemically induced , Adult , Lymphoma/drug therapy
5.
Neurophysiol Clin ; 54(1): 102941, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38382135

ABSTRACT

OBJECTIVE: To perform posturographic measurements with eyes open or closed using floor coverings with different textured surfaces to study postural control in patients with multiple sclerosis (MS). METHODS: Static posturographic recordings were performed with eyes open and eyes closed on a forceplate with no covering (control condition) or covered by a textured mat with small pimples (height 2 mm) or large pimples (height 7 mm). Several posturographic variables were measured, focusing on displacements of the center of pressure (CoP) including the average velocity (Vav), the total length (L) of all displacements, and the surface (S) of the confidence ellipse. The recordings made with the textured mats were compared to the control condition with eyes open or closed. Then, the differences between the recordings made with large vs. small pimples on the one hand, and with eyes closed vs. open were calculated to assess the impact of pimple height or eye closure on posturographic measurements. Clinical assessment was based on the Expanded Disability Status Scale (EDSS) and its functional system (FS) subscores, the Modified Fatigue Impact Scale (MFIS), the Unipodal Stance test (UST), and the Timed Up-and-Go test (TUG). RESULTS: Forty-six MS patients (mean EDSS score: 3.6) completed the study. Several posturographic variables, including Vav and L, deteriorated when measured on a textured mat, especially with large pimples and in eyes open condition. In contrast, no difference was found with small pimples and eyes closed, as compared to the control condition (no covering). The deleterious impact of pimple height on posturography correlated positively with the alteration of balance and gait clinically assessed by the UST and the TUG, and also with the MFIS physical and cerebral EDSS-FS subscores, and negatively with the cerebellar and brainstem subscores. On the other hand, the impact of eye closure on posturography was negatively correlated with the visual EDSS-FS subscore. DISCUSSION: Static posturographic measurements made with different textured surfaces and visual conditions can be considered as a sensitive tool to measure "proprioceptive reserves". Actually, when cerebellar, brainstem, or visual functions are impaired, the resources of the sensory (proprioceptive) system, if preserved, can be recruited at a higher level and compensate for dysfunctions of other postural controls to maintain a satisfactory balance. In addition, this procedure of static posturographic examination can provide objective measurements correlated with clinical testing of balance and gait and could usefully complement EDSS scoring to assess disability affecting postural control and the risk of falling in MS patients.


Subject(s)
Multiple Sclerosis , Humans , Proprioception , Gait , Postural Balance , Standing Position
SELECTION OF CITATIONS
SEARCH DETAIL