Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Biol ; 16(9): 1721-1736, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34415726

ABSTRACT

The interpretation of histone post-translational modifications (PTMs), specifically lysine methylation, by specific classes of "reader" proteins marks an important aspect of epigenetic control of gene expression. Methyl-lysine (Kme) readers often regulate gene expression patterns through the recognition of a specific Kme PTM while participating in or recruiting large protein complexes that contain enzymatic or chromatin remodeling activity. Understanding the composition of these Kme-reader-containing protein complexes can serve to further our understanding of the biological roles of Kme readers, while small molecule chemical tools can be valuable reagents in interrogating novel protein-protein interactions. Here, we describe our efforts to target the chromodomain of M-phase phosphoprotein 8 (MPP8), a member of the human silencing hub (HUSH) complex and a histone 3 lysine 9 trimethyl (H3K9me3) reader that is vital for heterochromatin formation and has specific roles in cancer metastasis. Utilizing a one-bead, one-compound (OBOC) combinatorial screening approach, we identified UNC5246, a peptidomimetic ligand capable of interacting with the MPP8 chromodomain in the context of the HUSH complex. Additionally, a biotinylated derivative of UNC5246 facilitated chemoproteomics studies which revealed hepatoma-derived growth factor-related protein 2 (HRP2) as a novel protein associated with MPP8. HRP2 was further shown to colocalize with MPP8 at the E-cadherin gene locus, suggesting a possible role in cancer cell plasticity.


Subject(s)
Cell Cycle Proteins/chemistry , Peptidomimetics/chemistry , Phosphoproteins/chemistry , Cell Cycle Proteins/metabolism , Fluorescence Resonance Energy Transfer , Histones/chemistry , Hydrophobic and Hydrophilic Interactions , Intercellular Signaling Peptides and Proteins/metabolism , Ligands , Lysine/chemistry , Mass Spectrometry , Methylation , Models, Molecular , Peptidomimetics/metabolism , Phosphoproteins/metabolism , Protein Binding , Protein Domains , Protein Processing, Post-Translational , Proteomics , Structure-Activity Relationship
2.
Sci Rep ; 9(1): 6524, 2019 04 25.
Article in English | MEDLINE | ID: mdl-31024026

ABSTRACT

Many common disease-causing mutations result in loss-of-function (LOF) of the proteins in which they occur. LOF mutations have proven recalcitrant to pharmacologic intervention, presenting a challenge for the development of targeted therapeutics. Polycomb repressive complex 2 (PRC2), which contains core subunits (EZH2, EED, and SUZ12), regulates gene activity by trimethylation of histone 3 lysine 27. The dysregulation of PRC2 catalytic activity by mutations has been implicated in cancer and other diseases. Among the mutations that cause PRC2 malfunction, an I363M LOF mutation of EED has been identified in myeloid disorders, where it prevents allosteric activation of EZH2 catalysis. We describe structure-based design and computational simulations of ligands created to ameliorate this LOF. Notably, these compounds selectively stimulate the catalytic activity of PRC2-EED-I363M over wildtype-PRC2. Overall, this work demonstrates the feasibility of developing targeted therapeutics for PRC2-EED-I363M that act as allosteric agonists, potentially correcting this LOF mutant phenotype.


Subject(s)
Drug Discovery , Mutation/genetics , Polycomb Repressive Complex 2/genetics , Allosteric Regulation , Cell Line , Drug Design , Humans , Molecular Dynamics Simulation , Mutant Proteins/chemistry , Peptidomimetics/chemical synthesis , Polycomb Repressive Complex 2/chemistry , Polycomb Repressive Complex 2/metabolism , Substrate Specificity
4.
ACS Comb Sci ; 19(3): 161-172, 2017 03 13.
Article in English | MEDLINE | ID: mdl-28165227

ABSTRACT

The function of EED within polycomb repressive complex 2 (PRC2) is mediated by a complex network of protein-protein interactions. Allosteric activation of PRC2 by binding of methylated proteins to the embryonic ectoderm development (EED) aromatic cage is essential for full catalytic activity, but details of this regulation are not fully understood. EED's recognition of the product of PRC2 activity, histone H3 lysine 27 trimethylation (H3K27me3), stimulates PRC2 methyltransferase activity at adjacent nucleosomes leading to H3K27me3 propagation and, ultimately, gene repression. By coupling combinatorial chemistry and structure-based design, we optimized a low-affinity methylated jumonji, AT-rich interactive domain 2 (Jarid2) peptide to a smaller, more potent peptidomimetic ligand (Kd = 1.14 ± 0.14 µM) of the aromatic cage of EED. Our strategy illustrates the effectiveness of applying combinatorial chemistry to achieve both ligand potency and property optimization. Furthermore, the resulting ligands, UNC5114 and UNC5115, demonstrate that targeted disruption of EED's reader function can lead to allosteric inhibition of PRC2 catalytic activity.


Subject(s)
Allosteric Regulation/drug effects , Peptidomimetics/chemistry , Peptidomimetics/pharmacology , Polycomb Repressive Complex 2/antagonists & inhibitors , Combinatorial Chemistry Techniques , Drug Discovery , Humans , Ligands , Molecular Docking Simulation , Peptidomimetics/chemical synthesis , Polycomb Repressive Complex 2/chemistry , Polycomb Repressive Complex 2/metabolism
5.
Bioorg Med Chem Lett ; 26(18): 4436-4440, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27528434

ABSTRACT

Epigenetic alterations relate to various human diseases, and developing inhibitors of Kme regulatory proteins is considered to be a new frontier for drug discovery. We were inspired by the known multicyclic ligands, UNC669 and UNC926, which are the first reported small molecule ligands for a methyl-lysine binding domain. We hypothesized that reducing the conformational flexibility of the key amine moiety of UNC669 would result in a unique set of ligands. Twenty-five novel compounds containing a fused bi- or tricyclic amine or a spirocyclic amine were designed and synthesized. To gauge the potential of these amine-containing compounds to interact with Kme regulatory proteins, the compounds were screened against a panel of 24 protein methyltransferases. Compound 13 was discovered as a novel scaffold that interacts with SETD8 and could serve as a starting point for the future development of PKMT inhibitors.


Subject(s)
Amines/chemistry , Methyltransferases/metabolism , Drug Design
6.
ACS Chem Biol ; 11(9): 2475-83, 2016 09 16.
Article in English | MEDLINE | ID: mdl-27356154

ABSTRACT

Efforts to develop strategies for small-molecule chemical probe discovery against the readers of the methyl-lysine (Kme) post-translational modification have been met with limited success. Targeted disruption of these protein-protein interactions via peptidomimetic inhibitor optimization is a promising alternative to small-molecule hit discovery; however, recognition of identical peptide motifs by multiple Kme reader proteins presents a unique challenge in the development of selective Kme reader chemical probes. These selectivity challenges are exemplified by the Polycomb repressive complex 1 (PRC1) chemical probe, UNC3866, which demonstrates submicromolar off-target affinity toward the non-PRC1 chromodomains CDYL2 and CDYL. Moreover, since peptidomimetics are challenging subjects for structure-activity relationship (SAR) studies, traditional optimization of UNC3866 would prove costly and time-consuming. Herein, we report a broadly applicable strategy for the affinity-based, target-class screening of chromodomains via the repurposing of UNC3866 in an efficient, combinatorial peptide library. A first-generation library yielded UNC4991, a UNC3866 analogue that exhibits a distinct selectivity profile while maintaining submicromolar affinity toward the CDYL chromodomains. Additionally, in vitro pull-down experiments from HeLa nuclear lysates further demonstrate the selectivity and utility of this compound for future elucidation of CDYL protein function.


Subject(s)
Molecular Probes/chemistry , Proteins/chemistry , Ligands , Protein Binding , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL