Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Immunol ; 7(68): eabi4919, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35179948

ABSTRACT

The response of naive CD8+ T cells to their cognate antigen involves rapid and broad changes to gene expression that are coupled with extensive chromatin remodeling, but the mechanisms governing these changes are not fully understood. Here, we investigated how these changes depend on the basic leucine zipper ATF-like transcription factor Batf, which is essential for the early phases of the process. Through genome scale profiling, we characterized the role of Batf in chromatin organization at several levels, including the accessibility of key regulatory regions, the expression of their nearby genes, and the interactions that these regions form with each other and with key transcription factors. We identified a core network of transcription factors that cooperated with Batf, including Irf4, Runx3, and T-bet, as indicated by their colocalization with Batf and their binding in regions whose accessibility, interactions, and expression of nearby genes depend on Batf. We demonstrated the synergistic activity of this network by overexpressing the different combinations of these genes in fibroblasts. Batf and Irf4, but not Batf alone, were sufficient to increase accessibility and transcription of key loci, normally associated with T cell function. Addition of Runx3 and T-bet further contributed to fine-tuning of these changes and was essential for establishing chromatin loops characteristic of T cells. These data provide a resource for studying the epigenomic and transcriptomic landscape of effector differentiation of cytotoxic T cells and for investigating the interdependency between transcription factors and its effects on the epigenome and transcriptome of primary cells.


Subject(s)
Basic-Leucine Zipper Transcription Factors/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Core Binding Factor Alpha 3 Subunit/immunology , Interferon Regulatory Factors/immunology , T-Box Domain Proteins/immunology , Animals , Basic-Leucine Zipper Transcription Factors/deficiency , Basic-Leucine Zipper Transcription Factors/genetics , Core Binding Factor Alpha 3 Subunit/genetics , Epigenesis, Genetic/genetics , Female , Interferon Regulatory Factors/genetics , Mice , Mice, Knockout , Mice, Transgenic , T-Box Domain Proteins/genetics
2.
Nat Immunol ; 18(2): 184-195, 2017 02.
Article in English | MEDLINE | ID: mdl-27992400

ABSTRACT

Invariant natural killer T cells (iNKT cells) are innate-like lymphocytes that protect against infection, autoimmune disease and cancer. However, little is known about the epigenetic regulation of iNKT cell development. Here we found that the H3K27me3 histone demethylase UTX was an essential cell-intrinsic factor that controlled an iNKT-cell lineage-specific gene-expression program and epigenetic landscape in a demethylase-activity-dependent manner. UTX-deficient iNKT cells exhibited impaired expression of iNKT cell signature genes due to a decrease in activation-associated H3K4me3 marks and an increase in repressive H3K27me3 marks within the promoters occupied by UTX. We found that JunB regulated iNKT cell development and that the expression of genes that were targets of both JunB and the iNKT cell master transcription factor PLZF was UTX dependent. We identified iNKT cell super-enhancers and demonstrated that UTX-mediated regulation of super-enhancer accessibility was a key mechanism for commitment to the iNKT cell lineage. Our findings reveal how UTX regulates the development of iNKT cells through multiple epigenetic mechanisms.


Subject(s)
Cell Differentiation , Epigenesis, Genetic , Gene Expression Regulation , Histone Demethylases/metabolism , Natural Killer T-Cells/physiology , Animals , Cell Lineage , Cells, Cultured , Enhancer Elements, Genetic/genetics , Histone Demethylases/genetics , Immunity, Innate/genetics , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Mice , Mice, Inbred C57BL , Organ Specificity , Promoter Regions, Genetic/genetics , Promyelocytic Leukemia Zinc Finger Protein , Transcription Factors/genetics , Transcription Factors/metabolism
3.
Science ; 354(6316): 1160-1165, 2016 12 02.
Article in English | MEDLINE | ID: mdl-27789795

ABSTRACT

Blocking Programmed Death-1 (PD-1) can reinvigorate exhausted CD8 T cells (TEX) and improve control of chronic infections and cancer. However, whether blocking PD-1 can reprogram TEX into durable memory T cells (TMEM) is unclear. We found that reinvigoration of TEX in mice by PD-L1 blockade caused minimal memory development. After blockade, reinvigorated TEX became reexhausted if antigen concentration remained high and failed to become TMEM upon antigen clearance. TEX acquired an epigenetic profile distinct from that of effector T cells (TEFF) and TMEM cells that was minimally remodeled after PD-L1 blockade. This finding suggests that TEX are a distinct lineage of CD8 T cells. Nevertheless, PD-1 pathway blockade resulted in transcriptional rewiring and reengagement of effector circuitry in the TEX epigenetic landscape. These data indicate that epigenetic fate inflexibility may limit current immunotherapies.


Subject(s)
B7-H1 Antigen/genetics , CD8-Positive T-Lymphocytes/immunology , Cellular Reprogramming/genetics , Epigenesis, Genetic , Immunologic Memory/genetics , Animals , B7-H1 Antigen/antagonists & inhibitors , CD8-Positive T-Lymphocytes/transplantation , Cell Lineage/genetics , Cellular Reprogramming/immunology , Female , Gene Regulatory Networks , Immunotherapy , Interleukin-7/metabolism , Mice , Mice, Inbred C57BL , Transcription, Genetic
4.
Science ; 354(6316): 1165-1169, 2016 12 02.
Article in English | MEDLINE | ID: mdl-27789799

ABSTRACT

Exhausted T cells in cancer and chronic viral infection express distinctive patterns of genes, including sustained expression of programmed cell death protein 1 (PD-1). However, the regulation of gene expression in exhausted T cells is poorly understood. Here, we define the accessible chromatin landscape in exhausted CD8+ T cells and show that it is distinct from functional memory CD8+ T cells. Exhausted CD8+ T cells in humans and a mouse model of chronic viral infection acquire a state-specific epigenetic landscape organized into functional modules of enhancers. Genome editing shows that PD-1 expression is regulated in part by an exhaustion-specific enhancer that contains essential RAR, T-bet, and Sox3 motifs. Functional enhancer maps may offer targets for genome editing that alter gene expression preferentially in exhausted CD8+ T cells.


Subject(s)
B7-H1 Antigen/genetics , CD8-Positive T-Lymphocytes/immunology , Enhancer Elements, Genetic , Epigenesis, Genetic , Immunologic Memory/genetics , Animals , B7-H1 Antigen/antagonists & inhibitors , CD8-Positive T-Lymphocytes/transplantation , Cell Lineage/genetics , Chromatin/immunology , Chronic Disease , Disease Models, Animal , Gene Editing , HIV Infections/therapy , Hepatitis C, Chronic/therapy , Humans , Immunotherapy , Lymphocytic Choriomeningitis/therapy , Mice , Mice, Inbred C57BL , SOXB1 Transcription Factors/metabolism , T-Box Domain Proteins/metabolism , Transcription, Genetic
5.
Science ; 350(6258): 334-9, 2015 Oct 16.
Article in English | MEDLINE | ID: mdl-26472910

ABSTRACT

The maintenance of immune homeostasis requires regulatory T cells (T(regs)). Given their intrinsic self-reactivity, T(regs) must stably maintain a suppressive phenotype to avoid autoimmunity. We report that impaired expression of the transcription factor (TF) Helios by FoxP3(+) CD4 and Qa-1-restricted CD8 T(regs) results in defective regulatory activity and autoimmunity in mice. Helios-deficient T(regs) develop an unstable phenotype during inflammatory responses characterized by reduced FoxP3 expression and increased effector cytokine expression secondary to diminished activation of the STAT5 pathway. CD8 T(regs) also require Helios-dependent STAT5 activation for survival and to prevent terminal T cell differentiation. The definition of Helios as a key transcription factor that stabilizes T(regs) in the face of inflammatory responses provides a genetic explanation for a core property of T(regs).


Subject(s)
Autoimmunity/immunology , CD8-Positive T-Lymphocytes/immunology , DNA-Binding Proteins/biosynthesis , T-Lymphocytes, Regulatory/immunology , Transcription Factors/biosynthesis , Animals , Autoimmunity/genetics , DNA-Binding Proteins/genetics , Forkhead Transcription Factors/immunology , Gene Expression , Kidney/immunology , Liver/immunology , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pancreas/immunology , STAT5 Transcription Factor/metabolism , Transcription Factors/genetics
6.
Proc Natl Acad Sci U S A ; 112(2): 512-7, 2015 Jan 13.
Article in English | MEDLINE | ID: mdl-25548173

ABSTRACT

The differentiation of effector CD8(+) T cells is critical for the development of protective responses to pathogens and for effective vaccines. In the first few hours after activation, naive CD8(+) T cells initiate a transcriptional program that leads to the formation of effector and memory T cells, but the regulation of this process is poorly understood. Investigating the role of specific transcription factors (TFs) in determining CD8(+) effector T-cell fate by gene knockdown with RNAi is challenging because naive T cells are refractory to transduction with viral vectors without extensive ex vivo stimulation, which obscures the earliest events in effector differentiation. To overcome this obstacle, we developed a novel strategy to test the function of genes in naive CD8(+) T cells in vivo by creating bone marrow chimera from hematopoietic progenitors transduced with an inducible shRNA construct. Following hematopoietic reconstitution, this approach allowed inducible in vivo gene knockdown in any cell type that developed from this transduced progenitor pool. We demonstrated that lentivirus-transduced progenitor cells could reconstitute normal hematopoiesis and develop into naive CD8(+) T cells that were indistinguishable from wild-type naive T cells. This experimental system enabled induction of efficient gene knockdown in vivo without subsequent manipulation. We applied this strategy to show that the TF BATF is essential for initial commitment of naive CD8(+) T cells to effector development but becomes dispensable by 72h. This approach makes possible the study of gene function in vivo in unperturbed cells of hematopoietic origin that are refractory to viral transduction.


Subject(s)
Basic-Leucine Zipper Transcription Factors/antagonists & inhibitors , Basic-Leucine Zipper Transcription Factors/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , RNA Interference , Animals , Basic-Leucine Zipper Transcription Factors/genetics , CD8-Positive T-Lymphocytes/cytology , Cell Differentiation , Gene Knockdown Techniques , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/immunology , Hematopoietic Stem Cells/metabolism , Lentivirus/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , RNA, Small Interfering/genetics , Transduction, Genetic , Transplantation Chimera
7.
Nat Immunol ; 15(4): 373-83, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24584090

ABSTRACT

The transcription factor BATF is required for the differentiation of interleukin 17 (IL-17)-producing helper T cells (TH17 cells) and follicular helper T cells (TFH cells). Here we identified a fundamental role for BATF in regulating the differentiation of effector of CD8(+) T cells. BATF-deficient CD8(+) T cells showed profound defects in effector population expansion and underwent proliferative and metabolic catastrophe early after encountering antigen. BATF, together with the transcription factors IRF4 and Jun proteins, bound to and promoted early expression of genes encoding lineage-specific transcription-factors (T-bet and Blimp-1) and cytokine receptors while paradoxically repressing genes encoding effector molecules (IFN-γ and granzyme B). Thus, BATF amplifies T cell antigen receptor (TCR)-dependent expression of transcription factors and augments the propagation of inflammatory signals but restrains the expression of genes encoding effector molecules. This checkpoint prevents irreversible commitment to an effector fate until a critical threshold of downstream transcriptional activity has been achieved.


Subject(s)
Basic-Leucine Zipper Transcription Factors/metabolism , CD8-Positive T-Lymphocytes/immunology , T-Box Domain Proteins/metabolism , Th17 Cells/immunology , Transcription Factors/metabolism , Animals , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/immunology , Cell Differentiation/genetics , Cell Growth Processes/genetics , Cells, Cultured , Down-Regulation , Granzymes/genetics , Granzymes/metabolism , Interferon Regulatory Factors/metabolism , Interferon-gamma/genetics , Interferon-gamma/metabolism , Lymphocyte Activation/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Positive Regulatory Domain I-Binding Factor 1 , Proto-Oncogene Proteins c-jun/metabolism , T-Box Domain Proteins/genetics , Transcription Factors/genetics , Transcriptional Activation/genetics
8.
Methods Mol Biol ; 979: 161-73, 2013.
Article in English | MEDLINE | ID: mdl-23397395

ABSTRACT

Genome-wide gene expression analysis has become a very powerful routine tool for the study of distinct differentiation states. However, the examination of total populations of cells that contain high levels of heterogeneity, such as the total CD8(+) T cell population during an immune response, is limited because that complexity hampers accurate interpretation. The gene expression signatures from populations represent the average of all cells within the populations, which will smooth out large expression changes within small subpopulations and virtually eliminate any small changes. However, small expression changes within a minor subpopulation, such as antigen-specific CD8(+) T cells responding to an infection, can have relevant biological consequences. Although very limited amounts of RNA can be isolated from small subpopulations of cells, there are now methods to synthesize and amplify cDNA from this limited RNA in sufficient quantities needed for microarray analysis. Here, we describe a complete protocol to extract RNA from small numbers of cells, synthesize cDNA from that RNA, and amplify that cDNA in an unbiased method. This protocol is a useful tool for the study of genome-wide expression signatures from many of the subpopulations that are numerically small but important in immune responses and homeostasis.


Subject(s)
Antigens/immunology , DNA, Complementary/biosynthesis , DNA, Complementary/genetics , Gene Expression Profiling/methods , Nucleic Acid Amplification Techniques/methods , RNA/isolation & purification , T-Lymphocytes/metabolism , Genomics , Oligonucleotide Array Sequence Analysis , Quality Control , T-Lymphocytes/immunology
9.
Curr Opin HIV AIDS ; 7(1): 38-43, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22156844

ABSTRACT

PURPOSE OF REVIEW: This review will discuss the use of systems biology approaches to dissect the heterogeneity of the HIV-specific CD8+ T-cell response. RECENT FINDINGS: New experimental approaches have allowed complex phenotypes of individual cells present in the human antigen-specific CD8+ T-cell response to be characterized. Genome-wide measurements of gene expression in antigen-specific T cells have created broad molecular phenotypes of the T-cell response to HIV. Pattern recognition algorithms to discover new subclasses of samples in microarray datasets are becoming increasingly sophisticated. Together, these advances now allow the heterogeneity of the T-cell response to HIV to be unraveled. SUMMARY: The phenotype of antigen-specific T cells responding to pathogens like HIV in humans is seen as much 'noisier' than in animal models of infection. However, applying new systems biology tools may provide an opportunity to identify the sources of this 'noise' as novel, biologically distinct subclasses of the CD8+ T-cell response to HIV.


Subject(s)
Antigens, Viral/immunology , CD8-Positive T-Lymphocytes/immunology , HIV/immunology , Systems Biology/methods , Humans , Immunophenotyping/methods , Microarray Analysis
10.
PLoS One ; 6(9): e24924, 2011.
Article in English | MEDLINE | ID: mdl-21949789

ABSTRACT

The human immunodeficiency virus type 1 (HIV-1) accessory protein viral protein R (Vpr) is a major determinant for virus-induced G2/M cell cycle arrest and cytopathicity. Vpr is thought to perform these functions through the interaction with partner proteins. The NMR structure of Vpr revealed solvent exposed hydrophobic amino acids along helices 1 and 3 of Vpr, which could be putative protein binding domains. We previously showed that the hydrophobic patch along helix-3 was important for G2/M blockade and cytopathicity. Mutations of the exposed hydrophobic residues along helix-1 were found to reduce Vpr-induced cell cycle arrest and cell death as well. The levels of toxicity during virion delivery of Vpr correlated with G2/M arrest. Thus, the exposed hydrophobic amino acids in the amino-terminal helix-1 are important for the cell cycle arrest and cytopathicity functions of Vpr.


Subject(s)
Apoptosis , Cell Division/physiology , G2 Phase/physiology , Hydrophobic and Hydrophilic Interactions , Virion/physiology , vpr Gene Products, Human Immunodeficiency Virus/chemistry , vpr Gene Products, Human Immunodeficiency Virus/metabolism , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cell Nucleus/virology , Cells, Cultured , HIV Infections/genetics , HIV Infections/metabolism , HIV Infections/virology , HIV-1 , Humans , Immunoblotting , Mutation/genetics , Protein Structure, Secondary , vpr Gene Products, Human Immunodeficiency Virus/genetics
11.
Virol J ; 8: 219, 2011 May 11.
Article in English | MEDLINE | ID: mdl-21569376

ABSTRACT

The two major cytopathic factors in human immunodeficiency virus type 1 (HIV-1), the accessory proteins viral infectivity factor (Vif) and viral protein R (Vpr), inhibit cell-cycle progression at the G2 phase of the cell cycle. Although Vpr-induced blockade and the associated T-cell death have been well studied, the molecular mechanism of G2 arrest by Vif remains undefined. To elucidate how Vif induces arrest, we infected synchronized Jurkat T-cells and examined the effect of Vif on the activation of Cdk1 and CyclinB1, the chief cell-cycle factors for the G2 to M phase transition. We found that the characteristic dephosphorylation of an inhibitory phosphate on Cdk1 did not occur in infected cells expressing Vif. In addition, the nuclear translocation of Cdk1 and CyclinB1 was disregulated. Finally, Vif-induced cell cycle arrest was correlated with proviral expression of Vif. Taken together, our results suggest that Vif impairs mitotic entry by interfering with Cdk1-CyclinB1 activation.


Subject(s)
CDC2 Protein Kinase/metabolism , Cell Cycle , Cyclin B1/metabolism , Virulence Factors/metabolism , vif Gene Products, Human Immunodeficiency Virus/metabolism , CDC2 Protein Kinase/antagonists & inhibitors , Cyclin B1/antagonists & inhibitors , HIV-1 , Humans , Jurkat Cells , T-Lymphocytes/physiology , T-Lymphocytes/virology
12.
J Virol ; 84(13): 6410-24, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20392842

ABSTRACT

Infection with human immunodeficiency virus type 1 (HIV-1) causes an inexorable depletion of CD4(+) T cells. The loss of these cells is particularly pronounced in the mucosal immune system during acute infection, and the data suggest that direct viral cytopathicity is a major factor. Cell cycle arrest caused by the HIV-1 accessory protein Vpr is strongly correlated with virus-induced cell death, and phosphorylation of Vpr serine 79 (S79) is required to activate G(2)/M cell cycle blockade. However, the kinase responsible for phosphorylating Vpr remains unknown. Our bioinformatic analyses revealed that S79 is part of a putative phosphorylation site recognized by protein kinase A (PKA). We show here that PKA interacts with Vpr and directly phosphorylates S79. Inhibition of PKA activity during HIV-1 infection abrogates Vpr cell cycle arrest. These findings provide new insight into the signaling event that activates Vpr cell cycle arrest, ultimately leading to the death of infected T cells.


Subject(s)
Cell Cycle , Cyclic AMP-Dependent Protein Kinases/metabolism , HIV-1/pathogenicity , vpr Gene Products, Human Immunodeficiency Virus/metabolism , Cell Line , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Humans , Lymphocytes/virology , Phosphorylation , Serine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL