Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Publication year range
2.
Sci Rep ; 11(1): 19341, 2021 09 29.
Article in English | MEDLINE | ID: mdl-34588495

ABSTRACT

The ventral face of the wings of the butterfly Dione vanillae is covered with bright and shiny silvery spots. These areas contain densely packed ground- and coverscales with a bright metallic appearance reflecting more than 50% of light uniformly over the visible range. Our analysis shows that this optically attractive feature is caused by the inner microstructure of the scales located in these areas. Electron microscopy of cross sections through the scales shows that upper and lower lamina, supporting trabeculae, and topping ridges can be approximated by a 'circus tent'-like geometry. By simulating its optical properties, we show that a moderate disorder of this geometry is important for the uniform reflection of light resulting in the silvery appearance.

3.
J Exp Zool B Mol Dev Evol ; 336(5): 404-416, 2021 07.
Article in English | MEDLINE | ID: mdl-33988912

ABSTRACT

Non-iridescent, structural coloration in birds originates from the feather's internal nanostructure (the spongy matrix) but melanin pigments and the barb's cortex can affect the resulting color. Here, we explore how this nanostructure is combined with other elements in differently colored plumage patches within a bird. We investigated the association between light reflectance and the morphology of feathers from the back and belly plumage patches of male swallow tanagers (Tersina viridis), which look greenish-blue and white, respectively. Both plumage patches have a reflectance peak around 550 nm but the reflectance spectrum is much less saturated in the belly. The barbs of both types of feathers have similar spongy matrices at their tips, rendering their reflectance spectra alike. However, the color of the belly feather barbs changes from light green at their tips to white closer to the rachis. These barbs lack pigments and their morphology changes considerably throughout. Toward the rachis, the barb is almost hollow, with a reduced area occupied by spongy matrix, and has a flattened shape. By contrast, the blue back feathers' barbs have melanin underneath the spongy matrix resulting in a much more saturated coloration. The color of these barbs is also even along the barbs' length. Our results suggest that the color differences between the white and greenish-blue plumage are mostly due to the differential deposition of melanin and a reduction of the spongy matrix near the rachis of the belly feather barbs and not a result of changes in the characteristics of the spongy matrix.


Subject(s)
Feathers/anatomy & histology , Feathers/physiology , Passeriformes/anatomy & histology , Passeriformes/physiology , Pigmentation/physiology , Animals , Male , Pigments, Biological
4.
Mol Ecol ; 28(7): 1730-1747, 2019 04.
Article in English | MEDLINE | ID: mdl-30636341

ABSTRACT

Avian diversity in the Neotropics has been traditionally attributed to the effect of vicariant forces promoting speciation in allopatry. Recent studies have shown that phylogeographical patterns shared among codistributed species cannot be explained by a single vicariant event, as species responses to a common barrier depend on the biological attributes of each taxon. The open vegetation corridor (OVC) isolates Amazonia and the Andean forests from the Atlantic Forest, creating a notorious pattern of avian taxa that are disjunctly codistributed in these forests. Here, we studied and compared the evolutionary histories of Ramphotrigon megacephalum and Pipraeidea melanonota, two passerines with allopatric populations east and west of the OVC that represent different subspecies. These species differ in their biological attributes: R. megacephalum is a sedentary, forest specialist mostly confined to bamboo understorey, whereas P. melanonota is a seasonal migrant and generalist species that ranges in a variety of closed and semi-open environments. We performed genetic and genomic analyses, complemented with the study of coloration and behavioural differentiation, to assess population divergence across the OVC. We found that the evolutionary histories of both R. megacephalum and P. melanonota have been shaped by this environmental barrier. However, these species responded in different and asynchronous manners to the establishment of the OVC and to past connections between the currently isolated South American forests, which can be mostly explained by their distinct ecologies and dispersal abilities. Our results support the fact that the biological attributes of species can make their evolutionary histories idiosyncratic.


Subject(s)
Biological Evolution , Genetic Speciation , Passeriformes/genetics , Animals , Forests , Genetics, Population , Phylogeny , Phylogeography , South America , Tropical Climate
5.
Genome ; 59(11): 899-911, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27824508

ABSTRACT

DNA barcodes of birds are currently available for 41% of known species and for many different geographic areas; therefore, they are a rich data source to answer evolutionary questions. We review studies that have used DNA barcodes to investigate evolutionary processes in birds using diverse approaches. We also review studies that have investigated species in depth where taxonomy and DNA barcodes present inconsistencies. Species that showed low genetic interspecific divergence and lack of reciprocal monophyly either are the result of recent radiation and (or) hybridize, while species with large genetic splits in their COI sequences were determined to be more than one independent evolutionary unit. In addition, we review studies that employed large DNA barcode datasets to study the molecular evolution of mitochondrial genes and the biogeography of islands, continents, and even at a multi-continental scale. These studies showed that DNA barcodes offer high-quality data well beyond their main purpose of serving as a molecular tool for species identification.


Subject(s)
Birds/classification , Birds/genetics , DNA Barcoding, Taxonomic , Evolution, Molecular , Animals , Biodiversity , Genes, Mitochondrial , Genetic Variation , Phylogeny , Phylogeography
6.
Mol Phylogenet Evol ; 89: 182-93, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25929787

ABSTRACT

We explored the phylogeographic patterns of intraspecific diversity in the Red-crowned Ant Tanager (Habia rubica) throughout its continent-wide distribution, in order to understand its evolutionary history and the role of evolutionary drivers that are considered to promote avian diversification in the Neotropics. We sampled 100 individuals of H. rubica from Mexico to Argentina covering the main areas of its disjunct distribution. We inferred phylogenetic relationships through Bayesian and maximum parsimony methodologies based on mitochondrial and nuclear markers, and complemented genetic analyses with the assessment of coloration and behavioral differentiation. We found four deeply divergent phylogroups within H. rubica: two South American lineages and two Mexican and Middle American lineages. The divergence event between the northern and southern phylogroups was dated to c. 5.0 Ma, seemingly related to the final uplift of the Northern Andes. Subsequently, the two South American phylogroups split c. 3.5 Ma possibly due to the development of the open vegetation corridor that currently isolates the Amazonian and Atlantic forests. Diversification throughout Mexico and Middle America, following dispersion across the Isthmus of Panama, was presumably more recent and coincident with Pleistocene climatic fluctuations and habitat fragmentations. The analyses of vocalizations and plumage coloration showed significant differences among main lineages that were consistent with the phylogenetic evidence. Our findings suggest that the evolutionary history of H. rubica has been shaped by an assortment of diversification drivers at different temporal and spatial scales resulting in deeply divergent lineages that we recommend should be treated as different species.


Subject(s)
Biodiversity , Biological Evolution , Genetic Variation/genetics , Passeriformes/genetics , Passeriformes/physiology , Phylogeny , Animals , Ants , Bayes Theorem , Central America , Feathers , Female , Genetic Speciation , Male , Passeriformes/anatomy & histology , Passeriformes/classification , Phylogeography , Pigmentation , South America , Species Specificity , Vocalization, Animal
7.
PLoS One ; 6(7): e20744, 2011.
Article in English | MEDLINE | ID: mdl-21818252

ABSTRACT

BACKGROUND: The causes for the higher biodiversity in the Neotropics as compared to the Nearctic and the factors promoting species diversification in each region have been much debated. The refuge hypothesis posits that high tropical diversity reflects high speciation rates during the Pleistocene, but this conclusion has been challenged. The present study investigates this matter by examining continental patterns of avian diversification through the analysis of large-scale DNA barcode libraries. METHODOLOGY AND PRINCIPAL FINDINGS: Standardized COI datasets from the avifaunas of Argentina, the Nearctic, and the Palearctic were analyzed. Average genetic distances between closest congeners and sister species were higher in Argentina than in North America reflecting a much higher percentage of recently diverged species in the latter region. In the Palearctic genetic distances between closely related species appeared to be more similar to those of the southern Neotropics. Average intraspecific variation was similar in Argentina and North America, while the Palearctic fauna had a higher value due to a higher percentage of variable species. Geographic patterning of intraspecific structure was more complex in the southern Neotropics than in the Nearctic, while the Palearctic showed an intermediate level of complexity. CONCLUSIONS AND SIGNIFICANCE: DNA barcodes can reveal continental patterns of diversification. Our analysis suggests that avian species are older in Argentina than in the Nearctic, supporting the idea that the greater diversity of the Neotropical avifauna is not caused by higher recent speciation rates. Species in the Palearctic also appear to be older than those in the Nearctic. These results, combined with the patterns of geographic structuring found in each region, suggest a major impact of Pleistocene glaciations in the Nearctic, a lesser effect in the Palearctic and a mild effect in the southern Neotropics.


Subject(s)
Biodiversity , Birds/genetics , DNA Barcoding, Taxonomic , Gene Library , Animals , Arctic Regions , Argentina , Electron Transport Complex IV/genetics , Haplotypes/genetics , Phylogeography , Species Specificity
8.
PLoS One ; 4(2): e4379, 2009.
Article in English | MEDLINE | ID: mdl-19194495

ABSTRACT

BACKGROUND: The Neotropical avifauna is more diverse than that of any other biogeographic region, but our understanding of patterns of regional divergence is limited. Critical examination of this issue is currently constrained by the limited genetic information available. This study begins to address this gap by assembling a library of mitochondrial COI sequences, or DNA barcodes, for Argentinian birds and comparing their patterns of genetic diversity to those of North American birds. METHODOLOGY AND PRINCIPAL FINDINGS: Five hundred Argentinian species were examined, making this the first major examination of DNA barcodes for South American birds. Our results indicate that most southern Neotropical bird species show deep sequence divergence from their nearest-neighbour, corroborating that the high diversity of this fauna is not based on an elevated incidence of young species radiations. Although species ages appear similar in temperate North and South American avifaunas, patterns of regional divergence are more complex in the Neotropics, suggesting that the high diversity of the Neotropical avifauna has been fueled by greater opportunities for regional divergence. Deep genetic splits were observed in at least 21 species, though distribution patterns of these lineages were variable. The lack of shared polymorphisms in species, even in species with less than 0.5M years of reproductive isolation, further suggests that selective sweeps could regularly excise ancestral mitochondrial polymorphisms. CONCLUSIONS: These findings confirm the efficacy of species delimitation in birds via DNA barcodes, even when tested on a global scale. Further, they demonstrate how large libraries of a standardized gene region provide insight into evolutionary processes.


Subject(s)
Birds/genetics , DNA, Mitochondrial/genetics , Evolution, Molecular , Tropical Climate , Animals , Argentina , Electron Transport Complex IV/genetics , Genetic Variation , Geography , North America , Phylogeny , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL