Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Microbiome ; 9(1): 93, 2021 04 20.
Article En | MEDLINE | ID: mdl-33879258

BACKGROUND: The gut microbiota-intestine-liver relationship is emerging as an important factor in multiple hepatic pathologies, but the hepatic sensors and effectors of microbial signals are not well defined. RESULTS: By comparing publicly available liver transcriptomics data from conventional vs. germ-free mice, we identified pregnane X receptor (PXR, NR1I2) transcriptional activity as strongly affected by the absence of gut microbes. Microbiota depletion using antibiotics in Pxr+/+ vs Pxr-/- C57BL/6J littermate mice followed by hepatic transcriptomics revealed that most microbiota-sensitive genes were PXR-dependent in the liver in males, but not in females. Pathway enrichment analysis suggested that microbiota-PXR interaction controlled fatty acid and xenobiotic metabolism. We confirmed that antibiotic treatment reduced liver triglyceride content and hampered xenobiotic metabolism in the liver from Pxr+/+ but not Pxr-/- male mice. CONCLUSIONS: These findings identify PXR as a hepatic effector of microbiota-derived signals that regulate the host's sexually dimorphic lipid and xenobiotic metabolisms in the liver. Thus, our results reveal a potential new mechanism for unexpected drug-drug or food-drug interactions. Video abstract.


Gastrointestinal Microbiome , Animals , Female , Gastrointestinal Microbiome/genetics , Lipids , Liver , Male , Mice , Mice, Inbred C57BL , Pregnane X Receptor/genetics , Xenobiotics
2.
Int J Mol Sci ; 20(15)2019 Aug 01.
Article En | MEDLINE | ID: mdl-31374856

The pregnane X receptor (PXR) is the main nuclear receptor regulating the expression of xenobiotic-metabolizing enzymes and is highly expressed in the liver and intestine. Recent studies have highlighted its additional role in lipid homeostasis, however, the mechanisms of these regulations are not fully elucidated. We investigated the transcriptomic signature of PXR activation in the liver of adult wild-type vs. Pxr-/- C57Bl6/J male mice treated with the rodent specific ligand pregnenolone 16α-carbonitrile (PCN). PXR activation increased liver triglyceride accumulation and significantly regulated the expression of 1215 genes, mostly xenobiotic-metabolizing enzymes. Among the down-regulated genes, we identified a strong peroxisome proliferator-activated receptor α (PPARα) signature. Comparison of this signature with a list of fasting-induced PPARα target genes confirmed that PXR activation decreased the expression of more than 25 PPARα target genes, among which was the hepatokine fibroblast growth factor 21 (Fgf21). PXR activation abolished plasmatic levels of FGF21. We provide a comprehensive signature of PXR activation in the liver and identify new PXR target genes that might be involved in the steatogenic effect of PXR. Moreover, we show that PXR activation down-regulates hepatic PPARα activity and FGF21 circulation, which could participate in the pleiotropic role of PXR in energy homeostasis.


Fibroblast Growth Factors/metabolism , Liver/metabolism , PPAR alpha/metabolism , Pregnane X Receptor/metabolism , Animals , Fibroblast Growth Factors/genetics , Gene Deletion , Gene Expression Profiling , Male , Mice, Inbred C57BL , Pregnane X Receptor/genetics , Transcriptional Activation , Transcriptome
...