Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Biophys J ; 122(12): 2544-2555, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37165621

ABSTRACT

The cardiac cycle is a tightly regulated process wherein the heart generates force to pump blood to the body during systole and then relaxes during diastole. Disruption of this finely tuned cycle can lead to a range of diseases including cardiomyopathies and heart failure. Cardiac contraction is driven by the molecular motor myosin, which pulls regulated thin filaments in a calcium-dependent manner. In some muscle and nonmuscle myosins, regulatory proteins on actin tune the kinetics, mechanics, and load dependence of the myosin working stroke; however, it is not well understood whether or how thin-filament regulatory proteins tune the mechanics of the cardiac myosin motor. To address this critical gap in knowledge, we used single-molecule techniques to measure the kinetics and mechanics of the substeps of the cardiac myosin working stroke in the presence and absence of thin filament regulatory proteins. We found that regulatory proteins gate the calcium-dependent interactions between myosin and the thin filament. At physiologically relevant ATP concentrations, cardiac myosin's mechanics and unloaded kinetics are not affected by thin-filament regulatory proteins. We also measured the load-dependent kinetics of cardiac myosin at physiologically relevant ATP concentrations using an isometric optical clamp, and we found that thin-filament regulatory proteins do not affect either the identity or magnitude of myosin's primary load-dependent transition. Interestingly, at low ATP concentrations at both saturating and physiologically relevant subsaturating calcium concentrations, thin-filament regulatory proteins have a small effect on actomyosin dissociation kinetics, suggesting a mechanism beyond simple steric blocking. These results have important implications for the modeling of cardiac physiology and diseases.


Subject(s)
Calcium , Cardiac Myosins , Cardiac Myosins/metabolism , Kinetics , Actins/metabolism , Myosins/metabolism , Adenosine Triphosphate/metabolism
2.
J Biol Chem ; 299(5): 104631, 2023 05.
Article in English | MEDLINE | ID: mdl-36963494

ABSTRACT

For decades, sarcomeric myosin heavy chain proteins were assumed to be restricted to striated muscle where they function as molecular motors that contract muscle. However, MYH7b, an evolutionarily ancient member of this myosin family, has been detected in mammalian nonmuscle tissues, and mutations in MYH7b are linked to hereditary hearing loss in compound heterozygous patients. These mutations are the first associated with hearing loss rather than a muscle pathology, and because there are no homologous mutations in other myosin isoforms, their functional effects were unknown. We generated recombinant human MYH7b harboring the D515N or R1651Q hearing loss-associated mutation and studied their effects on motor activity and structural and assembly properties, respectively. The D515N mutation had no effect on steady-state actin-activated ATPase rate or load-dependent detachment kinetics but increased actin sliding velocity because of an increased displacement during the myosin working stroke. Furthermore, we found that the D515N mutation caused an increase in the proportion of myosin heads that occupy the disordered-relaxed state, meaning more myosin heads are available to interact with actin. Although we found no impact of the R1651Q mutation on myosin rod secondary structure or solubility, we observed a striking aggregation phenotype when this mutation was introduced into nonmuscle cells. Our results suggest that each mutation independently affects MYH7b function and structure. Together, these results provide the foundation for further study of a role for MYH7b outside the sarcomere.


Subject(s)
Hearing Loss , Myosin Heavy Chains , Animals , Humans , Mice , Actins/metabolism , Cell Line , Chlorocebus aethiops , COS Cells , Hearing Loss/genetics , Hearing Loss/physiopathology , Kinetics , Mutation , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Protein Aggregates/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
3.
J Mol Cell Cardiol ; 176: 58-67, 2023 03.
Article in English | MEDLINE | ID: mdl-36739943

ABSTRACT

Dilated cardiomyopathy (DCM) is a leading cause of heart failure and a major indicator for heart transplant. Human genetic studies have identified over a thousand causal mutations for DCM in genes involved in a variety of cellular processes, including sarcomeric contraction. A substantial clinical challenge is determining the pathogenicity of novel variants in disease-associated genes. This challenge of connecting genotype and phenotype has frustrated attempts to develop effective, mechanism-based treatments for patients. Here, we identified a de novo mutation (T237S) in TPM1, the gene that encodes the thin filament protein tropomyosin, in a patient with DCM and conducted in vitro experiments to characterize the pathogenicity of this novel variant. We expressed recombinant mutant protein, reconstituted it into thin filaments, and examined the effects of the mutation on thin filament function. We show that the mutation reduces the calcium sensitivity of thin filament activation, as previously seen for known pathogenic mutations. Mechanistically, this shift is due to mutation-induced changes in tropomyosin positioning along the thin filament. We demonstrate that the thin filament activator omecamtiv mecarbil restores the calcium sensitivity of thin filaments regulated by the mutant tropomyosin, which lays the foundation for additional experiments to explore the therapeutic potential of this drug for patients harboring the T237S mutation. Taken together, our results suggest that the TPM1 T237S mutation is likely pathogenic and demonstrate how functional in vitro characterization of pathogenic protein variants in the lab might guide precision medicine in the clinic.


Subject(s)
Cardiomyopathy, Dilated , Humans , Cardiomyopathy, Dilated/pathology , Tropomyosin/genetics , Tropomyosin/metabolism , Calcium/metabolism , Actin Cytoskeleton/metabolism , Mutation/genetics
4.
bioRxiv ; 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36711892

ABSTRACT

The cardiac cycle is a tightly regulated process wherein the heart generates force to pump blood to the body during systole and then relaxes during diastole. Disruption of this finely tuned cycle can lead to a range of diseases including cardiomyopathies and heart failure. Cardiac contraction is driven by the molecular motor myosin, which pulls regulated thin filaments in a calcium-dependent manner. In some muscle and non-muscle myosins, regulatory proteins on actin tune the kinetics, mechanics, and load dependence of the myosin working stroke; however, it is not well understood whether or how thin filament regulatory proteins tune the mechanics of the cardiac myosin motor. To address this critical gap in knowledge, we used single-molecule techniques to measure the kinetics and mechanics of the substeps of the cardiac myosin working stroke in the presence and absence of thin filament regulatory proteins. We found that regulatory proteins gate the calcium-dependent interactions between myosin and the thin filament. At physiologically relevant ATP concentrations, cardiac myosin's mechanics and unloaded kinetics are not affected by thin filament regulatory proteins. We also measured the load-dependent kinetics of cardiac myosin at physiologically relevant ATP concentrations using an isometric optical clamp, and we found that thin filament regulatory proteins do not affect either the identity or magnitude of myosin's primary load-dependent transition. Interestingly, at low ATP concentrations, thin filament regulatory proteins have a small effect on actomyosin dissociation kinetics, suggesting a mechanism beyond simple steric blocking. These results have important implications for both disease modeling and computational models of muscle contraction. Significance Statement: Human heart contraction is powered by the molecular motor ß-cardiac myosin, which pulls on thin filaments consisting of actin and the regulatory proteins troponin and tropomyosin. In some muscle and non-muscle systems, these regulatory proteins tune the kinetics, mechanics, and load dependence of the myosin working stroke. Despite having a central role in health and disease, it is not well understood whether the mechanics or kinetics of ß-cardiac myosin are affected by regulatory proteins. We show that regulatory proteins do not affect the mechanics or load-dependent kinetics of the working stroke at physiologically relevant ATP concentrations; however, they can affect the kinetics at low ATP concentrations, suggesting a mechanism beyond simple steric blocking. This has important implications for modeling of cardiac physiology and diseases.

5.
J Biol Chem ; 299(1): 102657, 2023 01.
Article in English | MEDLINE | ID: mdl-36334627

ABSTRACT

Myosin heavy chain 7b (MYH7b) is an evolutionarily ancient member of the sarcomeric myosin family, which typically supports striated muscle function. However, in mammals, alternative splicing prevents MYH7b protein production in cardiac and most skeletal muscles and limits expression to a subset of specialized muscles and certain nonmuscle environments. In contrast, MYH7b protein is abundant in python cardiac and skeletal muscles. Although the MYH7b expression pattern diverges in mammals versus reptiles, MYH7b shares high sequence identity across species. So, it remains unclear how mammalian MYH7b function may differ from that of other sarcomeric myosins and whether human and python MYH7b motor functions diverge as their expression patterns suggest. Thus, we generated recombinant human and python MYH7b protein and measured their motor properties to investigate any species-specific differences in activity. Our results reveal that despite having similar working strokes, the MYH7b isoforms have slower actin-activated ATPase cycles and actin sliding velocities than human cardiac ß-MyHC. Furthermore, python MYH7b is tuned to have slower motor activity than human MYH7b because of slower kinetics of the chemomechanical cycle. We found that the MYH7b isoforms adopt a higher proportion of myosin heads in the ultraslow, super-relaxed state compared with human cardiac ß-MyHC. These findings are supported by molecular dynamics simulations that predict MYH7b preferentially occupies myosin active site conformations similar to those observed in the structurally inactive state. Together, these results suggest that MYH7b is specialized for slow and energy-conserving motor activity and that differential tuning of MYH7b orthologs contributes to species-specific biological roles.


Subject(s)
Cardiac Myosins , Muscle, Skeletal , Myosin Heavy Chains , Animals , Humans , Mammals/metabolism , Muscle, Skeletal/metabolism , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Cardiac Myosins/genetics , Cardiac Myosins/metabolism
6.
J Mol Cell Cardiol ; 162: 1-9, 2022 01.
Article in English | MEDLINE | ID: mdl-34487755

ABSTRACT

Diabetes doubles the risk of developing heart failure (HF). As the prevalence of diabetes grows, so will HF unless the mechanisms connecting these diseases can be identified. Methylglyoxal (MG) is a glycolysis by-product that forms irreversible modifications on lysine and arginine, called glycation. We previously found that myofilament MG glycation causes sarcomere contractile dysfunction and is increased in patients with diabetes and HF. The aim of this study was to discover the molecular mechanisms by which MG glycation of myofilament proteins cause sarcomere dysfunction and to identify therapeutic avenues to compensate. In humans with type 2 diabetes without HF, we found increased glycation of sarcomeric actin compared to non-diabetics and it correlated with decreased calcium sensitivity. Depressed calcium sensitivity is pathogenic for HF, therefore myofilament glycation represents a promising therapeutic target to inhibit the development of HF in diabetics. To identify possible therapeutic targets, we further defined the molecular actions of myofilament glycation. Skinned myocytes exposed to 100 µM MG exhibited decreased calcium sensitivity, maximal calcium-activated force, and crossbridge kinetics. Replicating MG's functional affects using a computer simulation of sarcomere function predicted simultaneous decreases in tropomyosin's blocked-to-closed rate transition and crossbridge duty cycle were consistent with all experimental findings. Stopped-flow experiments and ATPase activity confirmed MG decreased the blocked-to-closed transition rate. Currently, no therapeutics target tropomyosin, so as proof-of-principal, we used a n-terminal peptide of myosin-binding protein C, previously shown to alter tropomyosin's position on actin. C0C2 completely rescued MG-induced calcium desensitization, suggesting a possible treatment for diabetic HF.


Subject(s)
Diabetes Mellitus, Type 2 , Tropomyosin , Actin Cytoskeleton/metabolism , Calcium/metabolism , Computer Simulation , Diabetes Mellitus, Type 2/metabolism , Humans , Myofibrils/metabolism , Tropomyosin/metabolism
7.
J Biol Chem ; 297(5): 101297, 2021 11.
Article in English | MEDLINE | ID: mdl-34634306

ABSTRACT

Cardiac myosin is the molecular motor that powers heart contraction by converting chemical energy from ATP hydrolysis into mechanical force. The power output of the heart is tightly regulated to meet the physiological needs of the body. Recent multiscale studies spanning from molecules to tissues have revealed complex regulatory mechanisms that fine-tune cardiac contraction, in which myosin not only generates power output but also plays an active role in its regulation. Thus, myosin is both shaped by and actively involved in shaping its mechanical environment. Moreover, these studies have shown that cardiac myosin-generated tension affects physiological processes beyond muscle contraction. Here, we review these novel regulatory mechanisms, as well as the roles that myosin-based force generation and mechanotransduction play in development and disease. We describe how key intra- and intermolecular interactions contribute to the regulation of myosin-based contractility and the role of mechanical forces in tuning myosin function. We also discuss the emergence of cardiac myosin as a drug target for diseases including heart failure, leading to the discovery of therapeutics that directly tune myosin contractility. Finally, we highlight some of the outstanding questions that must be addressed to better understand myosin's functions and regulation, and we discuss prospects for translating these discoveries into precision medicine therapeutics targeting contractility and mechanotransduction.


Subject(s)
Cardiac Myosins/metabolism , Heart Failure/metabolism , Mechanotransduction, Cellular , Myocardial Contraction , Myocardium/metabolism , Animals , Humans
8.
Mol Biol Cell ; 32(18): 1677-1689, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34161147

ABSTRACT

Dilated cardiomyopathy (DCM) is a significant cause of pediatric heart failure. Mutations in proteins that regulate cardiac muscle contraction can cause DCM; however, the mechanisms by which molecular-level mutations contribute to cellular dysfunction are not well understood. Better understanding of these mechanisms might enable the development of targeted therapeutics that benefit patient subpopulations with mutations that cause common biophysical defects. We examined the molecular- and cellular-level impacts of a troponin T variant associated with pediatric-onset DCM, R134G. The R134G variant decreased calcium sensitivity in an in vitro motility assay. Using stopped-flow and steady-state fluorescence measurements, we determined the molecular mechanism of the altered calcium sensitivity: R134G decouples calcium binding by troponin from the closed-to-open transition of the thin filament and decreases the cooperativity of myosin binding to regulated thin filaments. Consistent with the prediction that these effects would cause reduced force per sarcomere, cardiomyocytes carrying the R134G mutation are hypocontractile. They also show hallmarks of DCM that lie downstream of the initial insult, including disorganized sarcomeres and cellular hypertrophy. These results reinforce the importance of multiscale studies to fully understand mechanisms underlying human disease and highlight the value of mechanism-based precision medicine approaches for DCM.


Subject(s)
Calcium/metabolism , Cardiomyopathy, Dilated/genetics , Myocytes, Cardiac/physiology , Myosins/metabolism , Troponin T/metabolism , Actin Cytoskeleton/metabolism , Actomyosin/metabolism , Cardiomyopathy, Dilated/metabolism , Cells, Cultured , Humans , Mutation , Myocytes, Cardiac/pathology , Sarcomeres/metabolism , Sarcomeres/pathology , Tropomyosin/metabolism , Troponin C/metabolism , Troponin T/genetics
9.
Acad Med ; 95(6): 860-863, 2020 06.
Article in English | MEDLINE | ID: mdl-32134778

ABSTRACT

Medical schools and other higher education institutions across the United States are grappling with how to respond to racism on and off campus. Institutions and their faculty, administrators, and staff have examined their policies and practices, missions, curricula, and the representation of racial and ethnic minority groups among faculty, staff, and students. In addition, student-led groups, such as White Coats for Black Lives, have emerged to critically evaluate medical school curricula and advocate for change. Another approach to addressing racism has been a focus on the role of professionalism, which has been variably defined as values, traits, behaviors, morality, humanism, a role, an identity, and even a social contract.In this article, the authors consider the potential role that professionalism might play in responding to racism in medical education and at medical schools. They identify 3 concerns central to this idea. The first concern is differing definitions of what the problem being addressed really is. Is it isolated racist acts or institutional racism that is a reflection of white supremacy? The second concern is the notion that professionalism may be used as a tool of social control to maintain the interests of the social groups that dominate medicine. The third concern is that an overly simplistic application of professionalism, regardless of how the problem of racism is defined, may result in trainees practicing professionalism that is performative rather than internally motivated. The authors conclude that professionalism may complement a more systematic and holistic approach to addressing racism and white supremacy in medical education, but it is an insufficient stand-alone tool to address this core problem.


Subject(s)
Education, Medical, Undergraduate/standards , Faculty/standards , Professionalism , Schools, Medical/organization & administration , Students, Medical , Humans
10.
Biophys J ; 116(12): 2246-2252, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31126584

ABSTRACT

Striated muscle contraction occurs when myosin thick filaments bind to thin filaments in the sarcomere and generate pulling forces. This process is regulated by calcium, and it can be perturbed by pathological conditions (e.g., myopathies), physiological adaptations (e.g., ß-adrenergic stimulation), and pharmacological interventions. Therefore, it is important to have a methodology to robustly determine the impact of these perturbations and statistically evaluate their effects. Here, we present an approach to measure the equilibrium constants that govern muscle activation, estimate uncertainty in these parameters, and statistically test the effects of perturbations. We provide a MATLAB-based computational tool for these analyses, along with easy-to-follow tutorials that make this approach accessible. The hypothesis testing and error estimation approaches described here are broadly applicable, and the provided tools work with other types of data, including cellular measurements. To demonstrate the utility of the approach, we apply it to elucidate the biophysical mechanism of a mutation that causes familial hypertrophic cardiomyopathy. This approach is generally useful for studying muscle diseases and therapeutic interventions that target muscle contraction.


Subject(s)
Computational Biology , Heart Diseases/physiopathology , Muscles/physiopathology , Cardiomyopathy, Hypertrophic/genetics , Heart Diseases/genetics , Heart Diseases/pathology , Models, Cardiovascular , Muscles/pathology , Mutation , Myosin Subfragments/metabolism , Uncertainty
11.
Nat Commun ; 9(1): 5121, 2018 11 30.
Article in English | MEDLINE | ID: mdl-30504777

ABSTRACT

α-catenin is a key mechanosensor that forms force-dependent interactions with F-actin, thereby coupling the cadherin-catenin complex to the actin cytoskeleton at adherens junctions (AJs). However, the molecular mechanisms by which α-catenin engages F-actin under tension remained elusive. Here we show that the α1-helix of the α-catenin actin-binding domain (αcat-ABD) is a mechanosensing motif that regulates tension-dependent F-actin binding and bundling. αcat-ABD containing an α1-helix-unfolding mutation (H1) shows enhanced binding to F-actin in vitro. Although full-length α-catenin-H1 can generate epithelial monolayers that resist mechanical disruption, it fails to support normal AJ regulation in vivo. Structural and simulation analyses suggest that α1-helix allosterically controls the actin-binding residue V796 dynamics. Crystal structures of αcat-ABD-H1 homodimer suggest that α-catenin can facilitate actin bundling while it remains bound to E-cadherin. We propose that force-dependent allosteric regulation of αcat-ABD promotes dynamic interactions with F-actin involved in actin bundling, cadherin clustering, and AJ remodeling during tissue morphogenesis.


Subject(s)
Adherens Junctions/metabolism , alpha Catenin/metabolism , Actin Cytoskeleton/chemistry , Actin Cytoskeleton/metabolism , Actins/chemistry , Actins/metabolism , Animals , Cadherins/chemistry , Cadherins/metabolism , Humans , Protein Structure, Secondary , alpha Catenin/chemistry
12.
Mol Biol Cell ; 29(2): 111-122, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29142072

ABSTRACT

Cadherin complexes transduce force fluctuations at junctions to activate signals that reinforce stressed intercellular contacts. α-Catenin is an identified force transducer within cadherin complexes that is autoinhibited under low tension. Increased force triggers a conformational change that exposes a cryptic site for the actin-binding protein vinculin. This study tested predictions that salt bridges within the force-sensing core modulate α-catenin activation. Studies with a fluorescence resonance energy transfer (FRET)-based α-catenin conformation sensor demonstrated that each of the salt-bridge mutations R551A and D503N enhances α-catenin activation in live cells, but R551A has a greater impact. Under dynamic force loading at reannealing cell-cell junctions, the R551A mutant bound more vinculin than wild-type α-catenin. In vitro binding measurements quantified the impact of the R551A mutation on the free-energy difference between the active and autoinhibited α-catenin conformers. A 2-µs constant-force, steered molecular dynamics simulation of the core force-sensing region suggested how the salt-bridge mutants alter the α-catenin conformation, and identified a novel load-bearing salt bridge. These results reveal key structural features that determine the force-transduction mechanism and the force sensitivity of this crucial nanomachine.


Subject(s)
Actins/physiology , Cadherins/metabolism , Intercellular Junctions/metabolism , Vinculin/metabolism , alpha Catenin/metabolism , Actins/ultrastructure , Animals , Cells, Cultured , Fluorescence Resonance Energy Transfer , HEK293 Cells , Humans , Microfilament Proteins/metabolism , Molecular Dynamics Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...