Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 37
1.
Brain Commun ; 6(3): fcae132, 2024.
Article En | MEDLINE | ID: mdl-38707707

Neurofilament light chain is an established marker of neuroaxonal injury that is elevated in CSF and blood across various neurological diseases. It is increasingly used in clinical practice to aid diagnosis and monitor progression and as an outcome measure to assess safety and efficacy of disease-modifying therapies across the clinical translational neuroscience field. Quantitative methods for neurofilament light chain in human biofluids have relied on immunoassays, which have limited capacity to describe the structure of the protein in CSF and how this might vary in different neurodegenerative diseases. In this study, we characterized and quantified neurofilament light chain species in CSF across neurodegenerative and neuroinflammatory diseases and healthy controls using targeted mass spectrometry. We show that the quantitative immunoprecipitation-tandem mass spectrometry method developed in this study strongly correlates to single-molecule array measurements in CSF across the broad spectrum of neurodegenerative diseases and was replicable across mass spectrometry methods and centres. In summary, we have created an accurate and cost-effective assay for measuring a key biomarker in translational neuroscience research and clinical practice, which can be easily multiplexed and translated into clinical laboratories for the screening and monitoring of neurodegenerative disease or acute brain injury.

2.
Brain Commun ; 6(2): fcae081, 2024.
Article En | MEDLINE | ID: mdl-38505230

Alzheimer's disease biomarkers are crucial to understanding disease pathophysiology, aiding accurate diagnosis and identifying target treatments. Although the number of biomarkers continues to grow, the relative utility and uniqueness of each is poorly understood as prior work has typically calculated serial pairwise relationships on only a handful of markers at a time. The present study assessed the cross-sectional relationships among 27 Alzheimer's disease biomarkers simultaneously and determined their ability to predict meaningful clinical outcomes using machine learning. Data were obtained from 527 community-dwelling volunteers enrolled in studies at the Charles F. and Joanne Knight Alzheimer Disease Research Center at Washington University in St Louis. We used hierarchical clustering to group 27 imaging, CSF and plasma measures of amyloid beta, tau [phosphorylated tau (p-tau), total tau t-tau)], neuronal injury and inflammation drawn from MRI, PET, mass-spectrometry assays and immunoassays. Neuropsychological and genetic measures were also included. Random forest-based feature selection identified the strongest predictors of amyloid PET positivity across the entire cohort. Models also predicted cognitive impairment across the entire cohort and in amyloid PET-positive individuals. Four clusters emerged reflecting: core Alzheimer's disease pathology (amyloid and tau), neurodegeneration, AT8 antibody-associated phosphorylated tau sites and neuronal dysfunction. In the entire cohort, CSF p-tau181/Aß40lumi and Aß42/Aß40lumi and mass spectrometry measurements for CSF pT217/T217, pT111/T111, pT231/T231 were the strongest predictors of amyloid PET status. Given their ability to denote individuals on an Alzheimer's disease pathological trajectory, these same markers (CSF pT217/T217, pT111/T111, p-tau/Aß40lumi and t-tau/Aß40lumi) were largely the best predictors of worse cognition in the entire cohort. When restricting analyses to amyloid-positive individuals, the strongest predictors of impaired cognition were tau PET, CSF t-tau/Aß40lumi, p-tau181/Aß40lumi, CSF pT217/217 and pT205/T205. Non-specific CSF measures of neuronal dysfunction and inflammation were poor predictors of amyloid PET and cognitive status. The current work utilized machine learning to understand the interrelationship structure and utility of a large number of biomarkers. The results demonstrate that, although the number of biomarkers has rapidly expanded, many are interrelated and few strongly predict clinical outcomes. Examining the entire corpus of available biomarkers simultaneously provides a meaningful framework to understand Alzheimer's disease pathobiological change as well as insight into which biomarkers may be most useful in Alzheimer's disease clinical practice and trials.

3.
Nat Aging ; 4(5): 694-708, 2024 May.
Article En | MEDLINE | ID: mdl-38514824

Biological staging of individuals with Alzheimer's disease (AD) may improve diagnostic and prognostic workup of dementia in clinical practice and the design of clinical trials. In this study, we used the Subtype and Stage Inference (SuStaIn) algorithm to establish a robust biological staging model for AD using cerebrospinal fluid (CSF) biomarkers. Our analysis involved 426 participants from BioFINDER-2 and was validated in 222 participants from the Knight Alzheimer Disease Research Center cohort. SuStaIn identified a singular biomarker sequence and revealed that five CSF biomarkers effectively constituted a reliable staging model (ordered: Aß42/40, pT217/T217, pT205/T205, MTBR-tau243 and non-phosphorylated mid-region tau). The CSF stages (0-5) demonstrated a correlation with increased abnormalities in other AD-related biomarkers, such as Aß-PET and tau-PET, and aligned with longitudinal biomarker changes reflective of AD progression. Higher CSF stages at baseline were associated with an elevated hazard ratio of clinical decline. This study highlights a common molecular pathway underlying AD pathophysiology across all patients, suggesting that a single CSF collection can accurately indicate the presence of AD pathologies and characterize the stage of disease progression. The proposed staging model has implications for enhancing diagnostic and prognostic assessments in both clinical practice and the design of clinical trials.


Alzheimer Disease , Amyloid beta-Peptides , Biomarkers , tau Proteins , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/pathology , Alzheimer Disease/diagnosis , Humans , Biomarkers/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Female , Male , Amyloid beta-Peptides/cerebrospinal fluid , Aged , Disease Progression , Peptide Fragments/cerebrospinal fluid , Algorithms , Middle Aged , Positron-Emission Tomography
4.
Nat Med ; 30(4): 1085-1095, 2024 Apr.
Article En | MEDLINE | ID: mdl-38382645

With the emergence of Alzheimer's disease (AD) disease-modifying therapies, identifying patients who could benefit from these treatments becomes critical. In this study, we evaluated whether a precise blood test could perform as well as established cerebrospinal fluid (CSF) tests in detecting amyloid-ß (Aß) plaques and tau tangles. Plasma %p-tau217 (ratio of phosporylated-tau217 to non-phosphorylated tau) was analyzed by mass spectrometry in the Swedish BioFINDER-2 cohort (n = 1,422) and the US Charles F. and Joanne Knight Alzheimer Disease Research Center (Knight ADRC) cohort (n = 337). Matched CSF samples were analyzed with clinically used and FDA-approved automated immunoassays for Aß42/40 and p-tau181/Aß42. The primary and secondary outcomes were detection of brain Aß or tau pathology, respectively, using positron emission tomography (PET) imaging as the reference standard. Main analyses were focused on individuals with cognitive impairment (mild cognitive impairment and mild dementia), which is the target population for available disease-modifying treatments. Plasma %p-tau217 was clinically equivalent to FDA-approved CSF tests in classifying Aß PET status, with an area under the curve (AUC) for both between 0.95 and 0.97. Plasma %p-tau217 was generally superior to CSF tests in classification of tau-PET with AUCs of 0.95-0.98. In cognitively impaired subcohorts (BioFINDER-2: n = 720; Knight ADRC: n = 50), plasma %p-tau217 had an accuracy, a positive predictive value and a negative predictive value of 89-90% for Aß PET and 87-88% for tau PET status, which was clinically equivalent to CSF tests, further improving to 95% using a two-cutoffs approach. Blood plasma %p-tau217 demonstrated performance that was clinically equivalent or superior to clinically used FDA-approved CSF tests in the detection of AD pathology. Use of high-performance blood tests in clinical practice can improve access to accurate AD diagnosis and AD-specific treatments.


Alzheimer Disease , Cognitive Dysfunction , Humans , tau Proteins , Biomarkers , Amyloid beta-Peptides/cerebrospinal fluid , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/cerebrospinal fluid , Hematologic Tests , Positron-Emission Tomography
5.
Ann Neurol ; 95(5): 951-965, 2024 May.
Article En | MEDLINE | ID: mdl-38400792

OBJECTIVE: A clock relating amyloid positron emission tomography (PET) to time was used to estimate the timing of biomarker changes in sporadic Alzheimer disease (AD). METHODS: Research participants were included who underwent cerebrospinal fluid (CSF) collection within 2 years of amyloid PET. The ages at amyloid onset and AD symptom onset were estimated for each individual. The timing of change for plasma, CSF, imaging, and cognitive measures was calculated by comparing restricted cubic splines of cross-sectional data from the amyloid PET positive and negative groups. RESULTS: The amyloid PET positive sub-cohort (n = 118) had an average age of 70.4 ± 7.4 years (mean ± standard deviation) and 16% were cognitively impaired. The amyloid PET negative sub-cohort (n = 277) included individuals with low levels of amyloid plaque burden at all scans who were cognitively unimpaired at the time of the scans. Biomarker changes were detected 15-19 years before estimated symptom onset for CSF Aß42/Aß40, plasma Aß42/Aß40, CSF pT217/T217, and amyloid PET; 12-14 years before estimated symptom onset for plasma pT217/T217, CSF neurogranin, CSF SNAP-25, CSF sTREM2, plasma GFAP, and plasma NfL; and 7-9 years before estimated symptom onset for CSF pT205/T205, CSF YKL-40, hippocampal volumes, and cognitive measures. INTERPRETATION: The use of an amyloid clock enabled visualization and analysis of biomarker changes as a function of estimated years from symptom onset in sporadic AD. This study demonstrates that estimated years from symptom onset based on an amyloid clock can be used as a continuous staging measure for sporadic AD and aligns with findings in autosomal dominant AD. ANN NEUROL 2024;95:951-965.


Alzheimer Disease , Amyloid beta-Peptides , Biomarkers , Positron-Emission Tomography , Humans , Alzheimer Disease/blood , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/diagnosis , Female , Male , Biomarkers/cerebrospinal fluid , Biomarkers/blood , Aged , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/blood , Middle Aged , Peptide Fragments/cerebrospinal fluid , Peptide Fragments/blood , Aged, 80 and over , Cross-Sectional Studies , Time Factors , Age of Onset , Cohort Studies , Disease Progression , Chitinase-3-Like Protein 1/cerebrospinal fluid , Chitinase-3-Like Protein 1/blood , Cognitive Dysfunction/cerebrospinal fluid , Cognitive Dysfunction/blood , Plaque, Amyloid/diagnostic imaging , Plaque, Amyloid/pathology
6.
Nat Med ; 29(8): 1979-1988, 2023 08.
Article En | MEDLINE | ID: mdl-37550416

Alzheimer's disease (AD) pathology develops many years before the onset of cognitive symptoms. Two pathological processes-aggregation of the amyloid-ß (Aß) peptide into plaques and the microtubule protein tau into neurofibrillary tangles (NFTs)-are hallmarks of the disease. However, other pathological brain processes are thought to be key disease mediators of Aß plaque and NFT pathology. How these additional pathologies evolve over the course of the disease is currently unknown. Here we show that proteomic measurements in autosomal dominant AD cerebrospinal fluid (CSF) linked to brain protein coexpression can be used to characterize the evolution of AD pathology over a timescale spanning six decades. SMOC1 and SPON1 proteins associated with Aß plaques were elevated in AD CSF nearly 30 years before the onset of symptoms, followed by changes in synaptic proteins, metabolic proteins, axonal proteins, inflammatory proteins and finally decreases in neurosecretory proteins. The proteome discriminated mutation carriers from noncarriers before symptom onset as well or better than Aß and tau measures. Our results highlight the multifaceted landscape of AD pathophysiology and its temporal evolution. Such knowledge will be critical for developing precision therapeutic interventions and biomarkers for AD beyond those associated with Aß and tau.


Alzheimer Disease , Proteomics , Humans , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/genetics , Alzheimer Disease/physiopathology , Biomarkers/metabolism , Male , Female , Adult , Middle Aged , Mutation , Age of Onset
7.
medRxiv ; 2023 Jul 16.
Article En | MEDLINE | ID: mdl-37503281

Biological staging of individuals with Alzheimer's disease (AD) may improve diagnostic and prognostic work-up of dementia in clinical practice and the design of clinical trials. Here, we created a staging model using the Subtype and Stage Inference (SuStaIn) algorithm by evaluating cerebrospinal fluid (CSF) amyloid-ß (Aß) and tau biomarkers in 426 participants from BioFINDER-2, that represent the entire spectrum of AD. The model composition and main analyses were replicated in 222 participants from the Knight ADRC cohort. SuStaIn revealed in the two cohorts that the data was best explained by a single biomarker sequence (one subtype), and that five CSF biomarkers (ordered: Aß42/40, tau phosphorylation occupancies at the residues 217 and 205 [pT217/T217 and pT205/T205], microtubule-binding region of tau containing the residue 243 [MTBR-tau243], and total tau) were sufficient to create an accurate disease staging model. Increasing CSF stages (0-5) were associated with increased abnormality in other AD-related biomarkers, such as Aß- and tau-PET, and aligned with different phases of longitudinal biomarker changes consistent with current models of AD progression. Higher CSF stages at baseline were associated with higher hazard ratio of clinical decline. Our findings indicate that a common pathophysiologic molecular pathway develops across all AD patients, and that a single CSF collection is sufficient to reliably indicate the presence of both AD pathologies and the degree and stage of disease progression.

8.
Nat Med ; 29(8): 1954-1963, 2023 08.
Article En | MEDLINE | ID: mdl-37443334

Aggregated insoluble tau is one of two defining features of Alzheimer's disease. Because clinical symptoms are strongly correlated with tau aggregates, drug development and clinical diagnosis need cost-effective and accessible specific fluid biomarkers of tau aggregates; however, recent studies suggest that the fluid biomarkers currently available cannot specifically track tau aggregates. We show that the microtubule-binding region (MTBR) of tau containing the residue 243 (MTBR-tau243) is a new cerebrospinal fluid (CSF) biomarker specific for insoluble tau aggregates and compared it to multiple other phosphorylated tau measures (p-tau181, p-tau205, p-tau217 and p-tau231) in two independent cohorts (BioFINDER-2, n = 448; and Knight Alzheimer Disease Research Center, n = 219). MTBR-tau243 was most strongly associated with tau-positron emission tomography (PET) and cognition, whereas showing the lowest association with amyloid-PET. In combination with p-tau205, MTBR-tau243 explained most of the total variance in tau-PET burden (0.58 ≤ R2 ≤ 0.75) and the performance in predicting cognitive measures (0.34 ≤ R2 ≤ 0.48) approached that of tau-PET (0.44 ≤ R2 ≤ 0.52). MTBR-tau243 levels longitudinally increased with insoluble tau aggregates, unlike CSF p-tau species. CSF MTBR-tau243 is a specific biomarker of tau aggregate pathology, which may be utilized in interventional trials and in the diagnosis of patients. Based on these findings, we propose to revise the A/T/(N) criteria to include MTBR-tau243 as representing insoluble tau aggregates ('T').


Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/pathology , tau Proteins/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Positron-Emission Tomography , Biomarkers/cerebrospinal fluid
9.
Aging Cell ; 22(8): e13871, 2023 08.
Article En | MEDLINE | ID: mdl-37291760

Although pathogenic variants in PSEN1 leading to autosomal-dominant Alzheimer disease (ADAD) are highly penetrant, substantial interindividual variability in the rates of cognitive decline and biomarker change are observed in ADAD. We hypothesized that this interindividual variability may be associated with the location of the pathogenic variant within PSEN1. PSEN1 pathogenic variant carriers participating in the Dominantly Inherited Alzheimer Network (DIAN) observational study were grouped based on whether the underlying variant affects a transmembrane (TM) or cytoplasmic (CY) protein domain within PSEN1. CY and TM carriers and variant non-carriers (NC) who completed clinical evaluation, multimodal neuroimaging, and lumbar puncture for collection of cerebrospinal fluid (CSF) as part of their participation in DIAN were included in this study. Linear mixed effects models were used to determine differences in clinical, cognitive, and biomarker measures between the NC, TM, and CY groups. While both the CY and TM groups were found to have similarly elevated Aß compared to NC, TM carriers had greater cognitive impairment, smaller hippocampal volume, and elevated phosphorylated tau levels across the spectrum of pre-symptomatic and symptomatic phases of disease as compared to CY, using both cross-sectional and longitudinal data. As distinct portions of PSEN1 are differentially involved in APP processing by γ-secretase and the generation of toxic ß-amyloid species, these results have important implications for understanding the pathobiology of ADAD and accounting for a substantial portion of the interindividual heterogeneity in ongoing ADAD clinical trials.


Alzheimer Disease , Presenilin-1 , Humans , Male , Female , Adult , Brain/metabolism , Brain/pathology , Positron-Emission Tomography , Magnetic Resonance Imaging , Presenilin-1/chemistry , Presenilin-1/genetics , Presenilin-1/metabolism , Mutation , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Cognition , Amyloid beta-Peptides/metabolism , tau Proteins/metabolism , Longitudinal Studies , Cross-Sectional Studies , Biomarkers
10.
Nat Aging ; 3(4): 391-401, 2023 04.
Article En | MEDLINE | ID: mdl-37117788

Cerebrospinal fluid (CSF) amyloid-ß peptide (Aß)42/Aß40 and the concentration of tau phosphorylated at site 181 (p-tau181) are well-established biomarkers of Alzheimer's disease (AD). The present study used mass spectrometry to measure concentrations of nine phosphorylated and five nonphosphorylated tau species and phosphorylation occupancies (percentage phosphorylated/nonphosphorylated) at ten sites. In the present study we show that, in 750 individuals with a median age of 71.2 years, CSF pT217/T217 predicted the presence of brain amyloid by positron emission tomography (PET) slightly better than Aß42/Aß40 (P = 0.02). Furthermore, for individuals with positive brain amyloid by PET (n = 263), CSF pT217/T217 was more strongly correlated with the amount of amyloid (Spearman's ρ = 0.69) than Aß42/Aß40 (ρ = -0.42, P < 0.0001). In two independent cohorts of participants with symptoms of AD dementia (n = 55 and n = 90), CSF pT217/T217 and pT205/T205 were better correlated with tau PET measures than CSF p-tau181 concentration. These findings suggest that CSF pT217/T217 and pT205/T205 represent improved CSF biomarkers of amyloid and tau pathology in AD.


Alzheimer Disease , Humans , Aged , Alzheimer Disease/diagnosis , tau Proteins/cerebrospinal fluid , Phosphorylation , Peptide Fragments/cerebrospinal fluid , Amyloid , Biomarkers/cerebrospinal fluid
11.
JAMA Neurol ; 80(5): 516-522, 2023 05 01.
Article En | MEDLINE | ID: mdl-36987840

Importance: Chronic kidney disease (CKD) has been associated with increased plasma concentrations of phosphorylated tau (p-tau) 217 and p-tau181, which potentially decreases their usefulness in the diagnostic workup of Alzheimer disease (AD). Objective: To investigate associations of CKD with plasma ratios of p-tau217 and p-tau181 to the corresponding unphosphorylated peptides in AD. Design, Setting, and Participants: This cross-sectional study included patients with mild cognitive impairment (cohort 1; enrollment in 2000-2005) and replication in cohort 2 from the Swedish BioFINDER-2 study, including both cognitively unimpaired individuals and those with cognitive impairment (enrollment in 2017-2022). All participants were from 2 memory clinics in Sweden and had plasma tau assessments and CKD status established within 6 months of plasma collection. Exposures: P-tau217 and p-tau181, unphosphorylated peptides (Tau212-221 and Tau181-190), and the ratios (pT217/T217 and pT181/T181) as well as estimated glomerular filtration rate (eGFR) as an indicator of CKD. Main Outcomes and Measures: Associations between plasma-soluble p-tau and CKD. Results: A total of 141 participants from cohort 1 (mean [SD] age, 72.2 [7.7] years; 82 [58.2%] women) and 332 participants from cohort 2 (172 with cognitive impairment and 160 cognitively unimpaired individuals; mean [SD] age, 69.8 [9.4] years; 169 [50.9%] women) were included. Higher eGFR was associated with increased levels of plasma p-tau217, p-tau181, Tau212-221, and Tau181-190 in individuals with cognitive impairment (cohort 1: R range, -0.24 to -0.59; P < .004; cohort 2: R range, -0.18 to -0.53; P < .02) and cognitively unimpaired individuals (cohort 2: R range, -0.44 to -0.50; P < .001). However, eGFR did not correlate with the pT217/T217 ratio in patients with cognitive impairment (cohort 1: R, -0.11; P = .19; cohort 2: R, -0.02; P = .78), and the correlations with pT217/T217 ratio were significantly attenuated in cognitively unimpaired individuals (difference: R, -0.14 [95% CI, -0.22 to -0.007]; P = .001). For p-tau217 and pT217/T217, the mean fold increases in amyloid-ß positive (Aß+) compared with Aß- groups ranged from 2.31 (95% CI, 1.86-2.77) to 4.61 (95% CI, 3.39-5.83) in participants with cognitive impairment and from 1.26 (95% CI, 0.98-1.55) to 1.27 (95% CI, 0.94-1.59) in cognitively unimpaired individuals and were clearly higher than the mean fold increases in those with CKD compared with those without CKD, ranging from 0.05 (95% CI, -0.28 to 0.38) to 0.72 (95% CI, 0.25-1.19) in participants with cognitive impairment and from 0.09 (95% CI, -0.08 to 0.26) to 0.36 (95% CI, 0.19-0.52) in cognitively unimpaired individuals. Conclusions and Relevance: In this study, CKD was associated with increased plasma levels of soluble tau, but for p-tau217 the associations were considerably lower than the association with Aß positivity. Importantly, the ratios, and especially pT217/T217, were less associated with CKD than p-tau forms alone and therefore are likely to more accurately reflect AD-related pathological changes.


Alzheimer Disease , Cognitive Dysfunction , Renal Insufficiency, Chronic , Humans , Female , Aged , Male , Alzheimer Disease/diagnosis , Cross-Sectional Studies , tau Proteins , Amyloid beta-Peptides , Biomarkers , Renal Insufficiency, Chronic/complications , Kidney , Positron-Emission Tomography
12.
Ann Neurol ; 94(1): 27-40, 2023 07.
Article En | MEDLINE | ID: mdl-36897120

OBJECTIVE: In Alzheimer's disease, hyperphosphorylated tau is associated with formation of insoluble paired helical filaments that aggregate as neurofibrillary tau tangles and are associated with neuronal loss and cognitive symptoms. Dual orexin receptor antagonists decrease soluble amyloid-ß levels and amyloid plaques in mouse models overexpressing amyloid-ß, but have not been reported to affect tau phosphorylation. In this randomized controlled trial, we tested the acute effect of suvorexant, a dual orexin receptor antagonist, on amyloid-ß, tau, and phospho-tau. METHODS: Thirty-eight cognitively unimpaired participants aged 45 to 65 years were randomized to placebo (N = 13), suvorexant 10 mg (N = 13), and suvorexant 20 mg (N = 12). Six milliliters of cerebrospinal fluid were collected via an indwelling lumbar catheter every 2 hours for 36 hours starting at 20:00. Participants received placebo or suvorexant at 21:00. All samples were processed and measured for multiple forms of amyloid-ß, tau, and phospho-tau via immunoprecipitation and liquid chromatography-mass spectrometry. RESULTS: The ratio of phosphorylated-tau-threonine-181 to unphosphorylated-tau-threonine-181, a measure of phosphorylation at this tau phosphosite, decreased ~10% to 15% in participants treated with suvorexant 20 mg compared to placebo. However, phosphorylation at tau-serine-202 and tau-threonine-217 were not decreased by suvorexant. Suvorexant decreased amyloid-ß ~10% to 20% compared to placebo starting 5 hours after drug administration. INTERPRETATION: In this study, suvorexant acutely decreased tau phosphorylation and amyloid-ß concentrations in the central nervous system. Suvorexant is approved by the US Food and Drug Administration to treatment insomnia and may have potential as a repurposed drug for the prevention of Alzheimer's disease, however, future studies with chronic treatment are needed. ANN NEUROL 2023;94:27-40.


Alzheimer Disease , Mice , Animals , Humans , Alzheimer Disease/diagnosis , Phosphorylation , tau Proteins/metabolism , Amyloid beta-Peptides/metabolism , Central Nervous System/metabolism , Orexin Receptor Antagonists/pharmacology , Orexin Receptor Antagonists/therapeutic use
13.
Ann Neurol ; 93(6): 1158-1172, 2023 06.
Article En | MEDLINE | ID: mdl-36843330

OBJECTIVE: Identifying cerebrospinal fluid measures of the microtubule binding region of tau (MTBR-tau) species that reflect tau aggregation could provide fluid biomarkers that track Alzheimer's disease related neurofibrillary tau pathological changes. We examined the cerebrospinal fluid (CSF) MTBR-tau species in dominantly inherited Alzheimer's disease (DIAD) mutation carriers to assess the association with Alzheimer's disease (AD) biomarkers and clinical symptoms. METHODS: Cross-sectional and longitudinal CSF from 229 DIAD mutation carriers and 130 mutation non-carriers had sequential characterization of N-terminal/mid-domain phosphorylated tau (p-tau) followed by MTBR-tau species and tau positron emission tomography (tau PET), other soluble tau and amyloid biomarkers, comprehensive clinical and cognitive assessments, and brain magnetic resonance imaging of atrophy. RESULTS: CSF MTBR-tau species located within the putative "border" region and one species corresponding to the "core" region of aggregates in neurofibrillary tangles (NFTs) increased during the presymptomatic stage and decreased during the symptomatic stage. The "border" MTBR-tau species were associated with amyloid pathology and CSF p-tau; whereas the "core" MTBR-tau species were associated stronger with tau PET and CSF measures of neurodegeneration. The ratio of the border to the core species provided a continuous measure of increasing amounts that tracked clinical progression and NFTs. INTERPRETATION: Changes in CSF soluble MTBR-tau species preceded the onset of dementia, tau tangle increase, and atrophy in DIAD. The ratio of 4R-specific MTBR-tau (border) to the NFT (core) MTBR-tau species corresponds to the pathology of NFTs in DIAD and change with disease progression. The dynamics between different MTBR-tau species in the CSF may serve as a marker of tau-related disease progression and target engagement of anti-tau therapeutics. ANN NEUROL 2023;93:1158-1172.


Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Cross-Sectional Studies , tau Proteins/metabolism , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/genetics , Cognitive Dysfunction/cerebrospinal fluid , Amyloid beta-Peptides/metabolism , Positron-Emission Tomography/methods , Atrophy/pathology , Biomarkers/cerebrospinal fluid , Disease Progression , Microtubules/metabolism , Microtubules/pathology
14.
Alzheimers Dement ; 19(7): 3055-3064, 2023 07.
Article En | MEDLINE | ID: mdl-36695437

INTRODUCTION: Sleep deprivation increases cerebrospinal fluid (CSF) amyloid beta (Aß) and tau levels; however, sleep's effect on Aß and tau in plasma is unknown. METHODS: In a cross-over design, CSF Aß and tau concentrations were measured in five cognitively normal individuals who had blood and CSF collected every 2 hours for 36 hours during sleep-deprived and normal sleep control conditions. RESULTS: Aß40, Aß42, unphosphorylated tau threonine181 (T181), unphosphorylated tau threonine-217 (T217), and phosphorylated T181 (pT181) concentrations increased ∼35% to 55% in CSF and decreased ∼5% to 15% in plasma during sleep deprivation. CSF/plasma ratios of all Alzheimer's disease (AD) biomarkers increased during sleep deprivation while the CSF/plasma albumin ratio, a measure of blood-CSF barrier permeability, decreased. CSF and plasma Aß42/40, pT181/T181, and pT181/Aß42 ratios were stable longitudinally in both groups. DISCUSSION: These findings show that sleep loss alters some plasma AD biomarkers by lowering brain clearance mechanisms and needs to be taken into account when interpreting individual plasma AD biomarkers but not ratios.


Alzheimer Disease , Sleep Initiation and Maintenance Disorders , Sleep Wake Disorders , Humans , Alzheimer Disease/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Sleep Deprivation , tau Proteins/cerebrospinal fluid , Sleep , Biomarkers/cerebrospinal fluid , Peptide Fragments/cerebrospinal fluid
15.
Brain ; 146(4): 1592-1601, 2023 04 19.
Article En | MEDLINE | ID: mdl-36087307

Plasma phospho-tau (p-tau) species have emerged as the most promising blood-based biomarkers of Alzheimer's disease. Here, we performed a head-to-head comparison of p-tau181, p-tau217 and p-tau231 measured using 10 assays to detect abnormal brain amyloid-ß (Aß) status and predict future progression to Alzheimer's dementia. The study included 135 patients with baseline diagnosis of mild cognitive impairment (mean age 72.4 years; 60.7% women) who were followed for an average of 4.9 years. Seventy-one participants had abnormal Aß-status (i.e. abnormal CSF Aß42/40) at baseline; and 45 of these Aß-positive participants progressed to Alzheimer's dementia during follow-up. P-tau concentrations were determined in baseline plasma and CSF. P-tau217 and p-tau181 were both measured using immunoassays developed by Lilly Research Laboratories (Lilly) and mass spectrometry assays developed at Washington University (WashU). P-tau217 was also analysed using Simoa immunoassay developed by Janssen Research and Development (Janss). P-tau181 was measured using Simoa immunoassay from ADxNeurosciences (ADx), Lumipulse immunoassay from Fujirebio (Fuji) and Splex immunoassay from Mesoscale Discovery (Splex). Both p-tau181 and p-tau231 were quantified using Simoa immunoassay developed at the University of Gothenburg (UGOT). We found that the mass spectrometry-based p-tau217 (p-tau217WashU) exhibited significantly better performance than all other plasma p-tau biomarkers when detecting abnormal Aß status [area under curve (AUC) = 0.947; Pdiff < 0.015] or progression to Alzheimer's dementia (AUC = 0.932; Pdiff < 0.027). Among immunoassays, p-tau217Lilly had the highest AUCs (0.886-0.889), which was not significantly different from the AUCs of p-tau217Janss, p-tau181ADx and p-tau181WashU (AUCrange 0.835-0.872; Pdiff > 0.09), but higher compared with AUC of p-tau231UGOT, p-tau181Lilly, p-tau181UGOT, p-tau181Fuji and p-tau181Splex (AUCrange 0.642-0.813; Pdiff ≤ 0.029). Correlations between plasma and CSF values were strongest for p-tau217WashU (R = 0.891) followed by p-tau217Lilly (R = 0.755; Pdiff = 0.003 versus p-tau217WashU) and weak to moderate for the rest of the p-tau biomarkers (Rrange 0.320-0.669). In conclusion, our findings suggest that among all tested plasma p-tau assays, mass spectrometry-based measures of p-tau217 perform best when identifying mild cognitive impairment patients with abnormal brain Aß or those who will subsequently progress to Alzheimer's dementia. Several other assays (p-tau217Lilly, p-tau217Janss, p-tau181ADx and p-tau181WashU) showed relatively high and consistent accuracy across both outcomes. The results further indicate that the highest performing assays have performance metrics that rival the gold standards of Aß-PET and CSF. If further validated, our findings will have significant impacts in diagnosis, screening and treatment for Alzheimer's dementia in the future.


Alzheimer Disease , Cognitive Dysfunction , Humans , Female , Aged , Male , Alzheimer Disease/diagnosis , tau Proteins , Amyloid beta-Peptides , Cognitive Dysfunction/diagnosis , Brain , Biomarkers
16.
Nat Med ; 28(12): 2547-2554, 2022 12.
Article En | MEDLINE | ID: mdl-36424467

Despite recent advances in fluid biomarker research in Alzheimer's disease (AD), there are no fluid biomarkers or imaging tracers with utility for diagnosis and/or theragnosis available for other tauopathies. Using immunoprecipitation and mass spectrometry, we show that 4 repeat (4R) isoform-specific tau species from microtubule-binding region (MTBR-tau275 and MTBR-tau282) increase in the brains of corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), frontotemporal lobar degeneration (FTLD)-MAPT and AD but decrease inversely in the cerebrospinal fluid (CSF) of CBD, FTLD-MAPT and AD compared to control and other FTLD-tau (for example, Pick's disease). CSF MTBR-tau measures are reproducible in repeated lumbar punctures and can be used to distinguish CBD from control (receiver operating characteristic area under the curve (AUC) = 0.889) and other FTLD-tau, such as PSP (AUC = 0.886). CSF MTBR-tau275 and MTBR-tau282 may represent the first affirmative biomarkers to aid in the diagnosis of primary tauopathies and facilitate clinical trial designs.


Alzheimer Disease , Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Tauopathies , Humans , Tauopathies/pathology , tau Proteins , Alzheimer Disease/diagnosis , Alzheimer Disease/pathology , Frontotemporal Lobar Degeneration/pathology , Frontotemporal Dementia/pathology , Biomarkers , Microtubules
17.
Cell Stem Cell ; 29(6): 918-932.e8, 2022 06 02.
Article En | MEDLINE | ID: mdl-35659876

Tau is a microtubule-binding protein expressed in neurons, and the equal ratios between 4-repeat (4R) and 3-repeat (3R) isoforms are maintained in normal adult brain function. Dysregulation of 3R:4R ratio causes tauopathy, and human neurons that recapitulate tau isoforms in health and disease will provide a platform for elucidating pathogenic processes involving tau pathology. We carried out extensive characterizations of tau isoforms expressed in human neurons derived by microRNA-induced neuronal reprogramming of adult fibroblasts. Transcript and protein analyses showed that miR neurons expressed all six isoforms with the 3R:4R isoform ratio equivalent to that detected in human adult brains. Also, miR neurons derived from familial tauopathy patients with a 3R:4R ratio altering mutation showed increased 4R tau and the formation of insoluble tau with seeding activity. Our results collectively demonstrate the utility of miRNA-induced neuronal reprogramming to recapitulate endogenous tau regulation comparable with the adult brain in health and disease.


MicroRNAs , Tauopathies , Adult , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Neurons/metabolism , Protein Isoforms/metabolism , Tauopathies/metabolism , Tauopathies/pathology , tau Proteins/metabolism
18.
Brain Commun ; 4(2): fcac045, 2022.
Article En | MEDLINE | ID: mdl-35415607

Neurofilament light is a well-established marker of both acute and chronic neuronal damage and is increased in multiple neurodegenerative diseases. However, the protein is not well characterized in brain tissue or body fluids, and it is unknown what neurofilament light species are detected by commercial assays and whether additional species exist. We developed an immunoprecipitation-mass spectrometry assay using custom antibodies targeting various neurofilament light domains, including antibodies targeting Coil 1A/1B of the rod domain (HJ30.13), Coil 2B of the rod domain (HJ30.4) and the tail region (HJ30.11). We utilized our assay to characterize neurofilament light in brain tissue and CSF of individuals with Alzheimer's disease dementia and healthy controls. We then validated a quantitative version of our assay and measured neurofilament light concentrations using both our quantitative immunoprecipitation-mass spectrometry assay and the commercially available immunoassay from Uman diagnostics in individuals with and without Alzheimer's disease dementia. Our validation cohort included CSF samples from 30 symptomatic amyloid-positive participants, 16 asymptomatic amyloid-positive participants, 10 symptomatic amyloid-negative participants and 25 amyloid-negative controls. We identified at least three major neurofilament light species in CSF, including N-terminal and C-terminal truncations, and a C-terminal fragment containing the tail domain. No full-length neurofilament light was identified in CSF. This contrasts with brain tissue, which contained mostly full-length neurofilament and a C-terminal tail domain fragment. We observed an increase in neurofilament light concentrations in individuals with Alzheimer's disease compared with healthy controls, with larger differences for some neurofilament light species than for others. The largest differences were observed for neurofilament light fragments including NfL165 (in Coil 1B), NfL324 (in Coil 2B) and NfL530 (in the C-terminal tail domain). The Uman immunoassay correlated most with NfL324. This study provides a comprehensive evaluation of neurofilament light in brain and CSF and enables future investigations of neurofilament light biology and utility as a biomarker.

19.
JAMA Neurol ; 79(3): 261-270, 2022 03 01.
Article En | MEDLINE | ID: mdl-35099506

IMPORTANCE: Allelic variation in the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism moderates increases in cerebrospinal fluid (CSF) levels of tau and phosphorylated tau 181 (p-tau181), measured using immunoassay, and cognitive decline in presymptomatic dominantly inherited Alzheimer disease (DIAD). Advances in mass spectrometry show that CSF tau phosphorylation occupancy at threonine 181 and 217 (p-tau181/tau181, p-tau217/tau217) increases with initial ß-amyloid (Aß) aggregation, while phosphorylation occupancy at threonine 205 (p-tau205/tau205) and level of total tau increase when brain atrophy and clinical symptoms become evident. OBJECTIVE: To determine whether site-specific tau phosphorylation occupancy (ratio of phosphorylated to unphosphorylated tau) is associated with BDNF Val66Met in presymptomatic and symptomatic DIAD. DESIGN, SETTING, AND PARTICIPANTS: This cross-sectional cohort study included participants from the Dominantly Inherited Alzheimer Network (DIAN) and Aß-positive cognitively normal older adults in the Alzheimer's Disease Neuroimaging Initiative (ADNI). Data were collected from 2009 through 2018 at multicenter clinical sites in the United States, United Kingdom, and Australia, with no follow-up. DIAN participants provided a CSF sample and completed clinical and cognitive assessments. Data analysis was conducted between March 2020 and March 2021. MAIN OUTCOMES AND MEASURES: Mass spectrometry analysis was used to determine site-specific tau phosphorylation level; tau levels were also measured using immunoassay. Episodic memory and global cognitive composites were computed. RESULTS: Of 374 study participants, 144 were mutation noncarriers, 156 were presymptomatic mutation carriers, and 74 were symptomatic carriers. Of the 527 participants in the network, 153 were excluded because their CSF sample, BDNF status, or both were unavailable. Also included were 125 Aß-positive cognitively normal older adults in the ADNI. The mean (SD) age of DIAD participants was 38.7 (10.9) years; 43% were women. The mean (SD) age of participants with preclinical sporadic AD was 74.8 (5.6) years; 52% were women. In presymptomatic mutation carriers, compared with Val66 homozygotes, Met66 carriers showed significantly poorer episodic memory (d = 0.62; 95% CI, 0.28-0.95), lower hippocampal volume (d = 0.40; 95% CI, 0.09-0.71), and higher p-tau217/tau217 (d = 0.64; 95% CI, 0.30-0.97), p-tau181/tau181 (d = 0.65; 95% CI, 0.32-0.99), and mass spectrometry total tau (d = 0.43; 95% CI, 0.10-0.76). In symptomatic mutation carriers, Met66 carriers showed significantly poorer global cognition (d = 1.17; 95% CI, 0.65-1.66) and higher p-tau217/tau217 (d = 0.53; 95% CI, 0.05-1.01), mass spectrometry total tau (d = 0.78; 95% CI, 0.28-1.25), and p-tau205/tau205 (d = 0.97; 95% CI, 0.46-1.45), when compared with Val66 homozygotes. In preclinical sporadic AD, Met66 carriers showed poorer episodic memory (d = 0.39; 95% CI, 0.00-0.77) and higher total tau (d = 0.45; 95% CI, 0.07-0.84) and p-tau181 (d = 0.46; 95% CI, 0.07-0.85). CONCLUSIONS AND RELEVANCE: In DIAD, clinical disease stage and BDNF Met66 were associated with cognitive impairment and levels of site-specific tau phosphorylation. This suggests that pharmacological strategies designed to increase neurotrophic support in the presymptomatic stages of AD may be beneficial.


Alzheimer Disease , Adult , Aged , Alzheimer Disease/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers , Brain-Derived Neurotrophic Factor/genetics , Cognition , Cross-Sectional Studies , Female , Humans , Male , Memory Disorders , Middle Aged , Positron-Emission Tomography/methods , Threonine , tau Proteins/cerebrospinal fluid
20.
J Alzheimers Dis ; 85(1): 415-429, 2022.
Article En | MEDLINE | ID: mdl-34806603

BACKGROUND: Understanding patterns of association between CSF phosphorylated tau (p-tau) species and clinical disease severity will aid Alzheimer's disease (AD) diagnosis and treatment. OBJECTIVE: To evaluate changes in tau phosphorylation ratios to brain imaging (amyloid PET, [18F]GTP1 PET, and MRI) and cognition across clinical stages of AD in two different cohorts. METHODS: A mass spectrometry (MS)-based method was used to evaluate the relationship between p-tau/tau phosphorylation ratios on 11 sites in CSF and AD pathology measured by tau PET ([18F]GTP1) and amyloid PET ([18F]florbetapir or [18F]florbetaben). Cohort A included cognitively normal amyloid negative (n = 6) and positive (n = 5) individuals, and amyloid positive prodromal (n = 13), mild (n = 12), and moderate AD patients (n = 10); and Cohort B included amyloid positive prodromal (n = 24) and mild (n = 40) AD patients. RESULTS: In this cross-sectional analysis, we identified clusters of phosphosites with different profiles of phosphorylation ratios across stages of disease. Eight of 11 investigated sites were hyperphosphorylated and associated with SUVR measures from [18F]GTP1 and amyloid PET. Novel sites 111, 153, and 208 may be relevant biomarkers for AD diagnosis to complement tau hyperphosphorylation measures on previously established sites 181, 205, 217, and 231. Hypophosphorylation was detected on residues 175, 199, and 202, and was inversely associated with [18F]GTP1 and amyloid PET. CONCLUSION: Hyperphosphorylated and hypophosphorylated forms of tau are associated with AD pathologies, and due to their different site-specific profiles, they may be used in combination to assist with staging of disease.


Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/pathology , Brain/pathology , Positron-Emission Tomography , tau Proteins/cerebrospinal fluid , Aged , Alzheimer Disease/diagnostic imaging , Biomarkers/cerebrospinal fluid , Brain/diagnostic imaging , Cognition , Cross-Sectional Studies , Female , Fluorine Radioisotopes/metabolism , Humans , Male , Mass Spectrometry , Middle Aged , Radiopharmaceuticals/metabolism
...