Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 1 de 1
1.
Sci Rep ; 13(1): 16881, 2023 Oct 06.
Article En | MEDLINE | ID: mdl-37803008

Cuprous oxide ([Formula: see text]) has recently emerged as a promising material in solid-state quantum technology, specifically for its excitonic Rydberg states characterized by large principal quantum numbers (n). The significant wavefunction size of these highly-excited states (proportional to [Formula: see text]) enables strong long-range dipole-dipole (proportional to [Formula: see text]) and van der Waals interactions (proportional to [Formula: see text]). Currently, the highest-lying Rydberg states are found in naturally occurring [Formula: see text]. However, for technological applications, the ability to grow high-quality synthetic samples is essential. The fabrication of thin-film [Formula: see text] samples is of particular interest as they hold potential for observing extreme single-photon nonlinearities through the Rydberg blockade. Nevertheless, due to the susceptibility of high-lying states to charged impurities, growing synthetic samples of sufficient quality poses a substantial challenge. This study successfully demonstrates the CMOS-compatible synthesis of a [Formula: see text] thin film on a transparent substrate that showcases Rydberg excitons up to [Formula: see text] which is readily suitable for photonic device fabrications. These findings mark a significant advancement towards the realization of scalable and on-chip integrable Rydberg quantum technologies.

...