Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Annu Rev Genet ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39227132

ABSTRACT

Polyploidy is a cellular state containing more than two complete chromosome sets. It has largely been studied as a discrete phenomenon in either organismal, tissue, or disease contexts. Increasingly, however, investigation of polyploidy across disciplines is coalescing around common principles. For example, the recent Polyploidy Across the Tree of Life meeting considered the contribution of polyploidy both in organismal evolution over millions of years and in tumorigenesis across much shorter timescales. Here, we build on this newfound integration with a unified discussion of polyploidy in organisms, cells, and disease. We highlight how common polyploidy is at multiple biological scales, thus eliminating the outdated mindset of its specialization. Additionally, we discuss rules that are likely common to all instances of polyploidy. With increasing appreciation that polyploidy is pervasive in nature and displays fascinating commonalities across diverse contexts, inquiry related to this important topic is rapidly becoming unified.

2.
Cancer Discov ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38975874

ABSTRACT

KRAS inhibitors demonstrate clinical efficacy in pancreatic ductal adenocarcinoma (PDAC); however, resistance is common. Among patients with KRASG12C-mutant PDAC treated with adagrasib or sotorasib, mutations in PIK3CA and KRAS, and amplifications of KRASG12C, MYC, MET, EGFR, and CDK6 emerged at acquired resistance. In PDAC cell lines and organoid models treated with the KRASG12D inhibitor MRTX1133, epithelial-to-mesenchymal transition and PI3K-AKT-mTOR signaling associate with resistance to therapy. MRTX1133 treatment of the KrasLSL-G12D/+;Trp53LSL-R172H/+;p48-Cre (KPC) mouse model yielded deep tumor regressions, but drug resistance ultimately emerged, accompanied by amplifications of Kras, Yap1, Myc, and Cdk6/Abcb1a/b, and co-evolution of drug-resistant transcriptional programs. Moreover, in KPC and PDX models, mesenchymal and basal-like cell states displayed increased response to KRAS inhibition compared to the classical state. Combination treatment with KRASG12D inhibition and chemotherapy significantly improved tumor control in PDAC mouse models. Collectively, these data elucidate co-evolving resistance mechanisms to KRAS inhibition and support multiple combination therapy strategies.

3.
Nat Commun ; 15(1): 5247, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898078

ABSTRACT

DNA replication in differentiated cells follows a defined program, but when and how it is established during mammalian development is not known. Here we show using single-cell sequencing, that late replicating regions are established in association with the B compartment and the nuclear lamina from the first cell cycle after fertilization on both maternal and paternal genomes. Late replicating regions contain a relative paucity of active origins and few but long genes and low G/C content. In both bovine and mouse embryos, replication timing patterns are established prior to embryonic genome activation. Chromosome breaks, which form spontaneously in bovine embryos at sites concordant with human embryos, preferentially locate to late replicating regions. In mice, late replicating regions show enhanced fragility due to a sparsity of dormant origins that can be activated under conditions of replication stress. This pattern predisposes regions with long neuronal genes to fragility and genetic change prior to separation of soma and germ cell lineages. Our studies show that the segregation of early and late replicating regions is among the first layers of genome organization established after fertilization.


Subject(s)
DNA Replication , Embryo, Mammalian , Nuclear Lamina , Animals , Mice , Embryo, Mammalian/metabolism , Cattle , Nuclear Lamina/metabolism , Female , Male , Humans , Embryonic Development/genetics , Genome , Single-Cell Analysis
4.
bioRxiv ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38562717

ABSTRACT

Driver gene mutations can increase the metastatic potential of the primary tumor1-3, but their role in sustaining tumor growth at metastatic sites is poorly understood. A paradigm of such mutations is inactivation of SMAD4 - a transcriptional effector of TGFß signaling - which is a hallmark of multiple gastrointestinal malignancies4,5. SMAD4 inactivation mediates TGFß's remarkable anti- to pro-tumorigenic switch during cancer progression and can thus influence both tumor initiation and metastasis6-14. To determine whether metastatic tumors remain dependent on SMAD4 inactivation, we developed a mouse model of pancreatic ductal adenocarcinoma (PDAC) that enables Smad4 depletion in the pre-malignant pancreas and subsequent Smad4 reactivation in established metastases. As expected, Smad4 inactivation facilitated the formation of primary tumors that eventually colonized the liver and lungs. By contrast, Smad4 reactivation in metastatic disease had strikingly opposite effects depending on the tumor's organ of residence: suppression of liver metastases and promotion of lung metastases. Integrative multiomic analysis revealed organ-specific differences in the tumor cells' epigenomic state, whereby the liver and lungs harbored chromatin programs respectively dominated by the KLF and RUNX developmental transcription factors, with Klf4 depletion being sufficient to reverse Smad4's tumor-suppressive activity in liver metastases. Our results show how epigenetic states favored by the organ of residence can influence the function of driver genes in metastatic tumors. This organ-specific gene-chromatin interplay invites consideration of anatomical site in the interpretation of tumor genetics, with implications for the therapeutic targeting of metastatic disease.

5.
Nat Commun ; 15(1): 1532, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378697

ABSTRACT

Acquired resistance to immunotherapy remains a critical yet incompletely understood biological mechanism. Here, using a mouse model of pancreatic ductal adenocarcinoma (PDAC) to study tumor relapse following immunotherapy-induced responses, we find that resistance is reproducibly associated with an epithelial-to-mesenchymal transition (EMT), with EMT-transcription factors ZEB1 and SNAIL functioning as master genetic and epigenetic regulators of this effect. Acquired resistance in this model is not due to immunosuppression in the tumor immune microenvironment, disruptions in the antigen presentation machinery, or altered expression of immune checkpoints. Rather, resistance is due to a tumor cell-intrinsic defect in T-cell killing. Molecularly, EMT leads to the epigenetic and transcriptional silencing of interferon regulatory factor 6 (Irf6), rendering tumor cells less sensitive to the pro-apoptotic effects of TNF-α. These findings indicate that acquired resistance to immunotherapy may be mediated by programs distinct from those governing primary resistance, including plasticity programs that render tumor cells impervious to T-cell killing.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Cell Line, Tumor , Neoplasm Recurrence, Local , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/therapy , Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/metabolism , Immunotherapy , Epithelial-Mesenchymal Transition/genetics , Tumor Microenvironment
6.
Nat Cancer ; 5(2): 315-329, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38177458

ABSTRACT

Metastatic gastric carcinoma is a highly lethal cancer that responds poorly to conventional and molecularly targeted therapies. Despite its clinical relevance, the mechanisms underlying the behavior and therapeutic response of this disease are poorly understood owing, in part, to a paucity of tractable models. Here we developed methods to somatically introduce different oncogenic lesions directly into the murine gastric epithelium. Genotypic configurations observed in patients produced metastatic gastric cancers that recapitulated the histological, molecular and clinical features of all nonviral molecular subtypes of the human disease. Applying this platform to both wild-type and immunodeficient mice revealed previously unappreciated links between the genotype, organotropism and immune surveillance of metastatic cells, which produced distinct patterns of metastasis that were mirrored in patients. Our results establish a highly portable platform for generating autochthonous cancer models with flexible genotypes and host backgrounds, which can unravel mechanisms of gastric tumorigenesis or test new therapeutic concepts.


Subject(s)
Stomach Neoplasms , Humans , Mice , Animals , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Disease Models, Animal , Gastric Mucosa/pathology , Genotype
8.
bioRxiv ; 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38234839

ABSTRACT

DNA replication in differentiated cells follows a defined program, but when and how it is established during mammalian development is not known. Here we show using single-cell sequencing, that both bovine and mouse cleavage stage embryos progress through S-phase in a defined pattern. Late replicating regions are associated with the nuclear lamina from the first cell cycle after fertilization, and contain few active origins, and few but long genes. Chromosome breaks, which form spontaneously in bovine embryos at sites concordant with human embryos, preferentially locate to late replicating regions. In mice, late replicating regions show enhanced fragility due to a sparsity of dormant origins that can be activated under conditions of replication stress. This pattern predisposes regions with long neuronal genes to fragility and genetic change prior to segregation of soma and germ line. Our studies show that the formation of early and late replicating regions is among the first layers of epigenetic regulation established on the mammalian genome after fertilization.

9.
Leuk Res ; 123: 106971, 2022 12.
Article in English | MEDLINE | ID: mdl-36332294

ABSTRACT

Measurable residual disease (MRD) assessment provides a potent indicator of the efficacy of anti-leukemic therapy. It is unknown, however, whether integrating MRD with molecular profiling better identifies patients at risk of relapse. To investigate the clinical relevance of MRD in relation to a molecular-based prognostic schema, we measured MRD by flow cytometry in 189 AML patients enrolled in ECOG-ACRIN E1900 trial (NCT00049517) in morphologic complete remission (CR) (28.8 % of the original cohort) representing 44.4 % of CR patients. MRD positivity was defined as ≥ 0.1 % of leukemic bone marrow cells. Risk classification was based on standard cytogenetics, fluorescence-in-situ-hybridization, somatic gene analysis, and sparse whole genome sequencing for copy number ascertainment. At 84.6 months median follow-up of patients still alive at the time of analysis (range 47.0-120 months), multivariate analysis demonstrated that MRD status at CR (p = 0.001) and integrated molecular risk (p = 0.0004) independently predicted overall survival (OS). Among risk classes, MRD status significantly affected OS only in the favorable risk group (p = 0.002). Expression of CD25 (α-chain of the interleukin-2 receptor) by leukemic myeloblasts at diagnosis negatively affected OS independent of post-treatment MRD levels. These data suggest that integrating MRD with genetic profiling and pre-treatment CD25 expression may improve prognostication in AML.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Flow Cytometry , Genomics , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/drug therapy , Neoplasm, Residual/genetics , Neoplasm, Residual/diagnosis , Prognosis
10.
Nat Cancer ; 3(11): 1367-1385, 2022 11.
Article in English | MEDLINE | ID: mdl-36344707

ABSTRACT

The most prominent homozygous deletions in cancer affect chromosome 9p21.3 and eliminate CDKN2A/B tumor suppressors, disabling a cell-intrinsic barrier to tumorigenesis. Half of 9p21.3 deletions, however, also encompass a type I interferon (IFN) gene cluster; the consequences of this co-deletion remain unexplored. To functionally dissect 9p21.3 and other large genomic deletions, we developed a flexible deletion engineering strategy, MACHETE (molecular alteration of chromosomes with engineered tandem elements). Applying MACHETE to a syngeneic mouse model of pancreatic cancer, we found that co-deletion of the IFN cluster promoted immune evasion, metastasis and immunotherapy resistance. Mechanistically, IFN co-deletion disrupted type I IFN signaling in the tumor microenvironment, leading to marked changes in infiltrating immune cells and escape from CD8+ T-cell surveillance, effects largely driven by the poorly understood interferon epsilon. These results reveal a chromosomal deletion that disables both cell-intrinsic and cell-extrinsic tumor suppression and provide a framework for interrogating large deletions in cancer and beyond.


Subject(s)
Interferons , Neoplasms , Animals , Mice , Chromosome Deletion , Chromosomes , Immune Evasion , Tumor Microenvironment/genetics , Tandem Repeat Sequences
12.
FASEB J ; 36(9): e22430, 2022 09.
Article in English | MEDLINE | ID: mdl-35920299

ABSTRACT

Minichromosome maintenance proteins (Mcm2-7) form a hexameric complex that unwinds DNA ahead of a replicative fork. The deficiency of Mcm proteins leads to replicative stress and consequent genomic instability. Mice with a germline insertion of a Cre cassette into the 3'UTR of the Mcm2 gene (designated Mcm2Cre ) have decreased Mcm2 expression and invariably develop precursor T-cell lymphoblastic leukemia/lymphoma (pre-T LBL), due to 100-1000 kb deletions involving important tumor suppressor genes. To determine whether mice that were protected from pre-T LBL would develop non-T-cell malignancies, we used two approaches. Mice engrafted with Mcm2Cre/Cre Lin- Sca-1+ Kit+ hematopoietic stem/progenitor cells did not develop hematologic malignancy; however, these mice died of hematopoietic stem cell failure by 6 months of age. Placing the Mcm2Cre allele onto an athymic nu/nu background completely prevented pre-T LBL and extended survival of these mice three-fold (median 296.5 vs. 80.5 days). Ultimately, most Mcm2Cre/Cre ;nu/nu mice developed B-cell precursor acute lymphoblastic leukemia (BCP-ALL). We identified recurrent deletions of 100-1000 kb that involved genes known or suspected to be involved in BCP-ALL, including Pax5, Nf1, Ikzf3, and Bcor. Moreover, whole-exome sequencing identified recurrent mutations of genes known to be involved in BCP-ALL progression, such as Jak1/Jak3, Ptpn11, and Kras. These findings demonstrate that an Mcm2Cre/Cre hypomorph can induce hematopoietic dysfunction via hematopoietic stem cell failure as well as a "deletor" phenotype affecting known or suspected tumor suppressor genes.


Subject(s)
Hematopoietic Stem Cells , Leukemia, Myeloid, Acute , Minichromosome Maintenance Complex Component 2 , Animals , DNA Replication , Hematopoietic Stem Cells/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mice , Minichromosome Maintenance Complex Component 2/genetics , Mutation , Repressor Proteins/genetics , Transcription Factors/metabolism
13.
Nature ; 608(7924): 795-802, 2022 08.
Article in English | MEDLINE | ID: mdl-35978189

ABSTRACT

Although p53 inactivation promotes genomic instability1 and presents a route to malignancy for more than half of all human cancers2,3, the patterns through which heterogenous TP53 (encoding human p53) mutant genomes emerge and influence tumorigenesis remain poorly understood. Here, in a mouse model of pancreatic ductal adenocarcinoma that reports sporadic p53 loss of heterozygosity before cancer onset, we find that malignant properties enabled by p53 inactivation are acquired through a predictable pattern of genome evolution. Single-cell sequencing and in situ genotyping of cells from the point of p53 inactivation through progression to frank cancer reveal that this deterministic behaviour involves four sequential phases-Trp53 (encoding mouse p53) loss of heterozygosity, accumulation of deletions, genome doubling, and the emergence of gains and amplifications-each associated with specific histological stages across the premalignant and malignant spectrum. Despite rampant heterogeneity, the deletion events that follow p53 inactivation target functionally relevant pathways that can shape genomic evolution and remain fixed as homogenous events in diverse malignant populations. Thus, loss of p53-the 'guardian of the genome'-is not merely a gateway to genetic chaos but, rather, can enable deterministic patterns of genome evolution that may point to new strategies for the treatment of TP53-mutant tumours.


Subject(s)
Carcinogenesis , Disease Progression , Genes, p53 , Genome , Loss of Heterozygosity , Pancreatic Neoplasms , Tumor Suppressor Protein p53 , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Animals , Carcinogenesis/genetics , Carcinogenesis/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Evolution, Molecular , Gene Deletion , Genes, p53/genetics , Genome/genetics , Mice , Models, Genetic , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Tumor Suppressor Protein p53/genetics
14.
Cell ; 185(16): 2988-3007.e20, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35858625

ABSTRACT

Human cleavage-stage embryos frequently acquire chromosomal aneuploidies during mitosis due to unknown mechanisms. Here, we show that S phase at the 1-cell stage shows replication fork stalling, low fork speed, and DNA synthesis extending into G2 phase. DNA damage foci consistent with collapsed replication forks, DSBs, and incomplete replication form in G2 in an ATR- and MRE11-dependent manner, followed by spontaneous chromosome breakage and segmental aneuploidies. Entry into mitosis with incomplete replication results in chromosome breakage, whole and segmental chromosome errors, micronucleation, chromosome fragmentation, and poor embryo quality. Sites of spontaneous chromosome breakage are concordant with sites of DNA synthesis in G2 phase, locating to gene-poor regions with long neural genes, which are transcriptionally silent at this stage of development. Thus, DNA replication stress in mammalian preimplantation embryos predisposes gene-poor regions to fragility, and in particular in the human embryo, to the formation of aneuploidies, impairing developmental potential.


Subject(s)
Chromosome Breakage , Chromosome Segregation , Aneuploidy , Animals , DNA , DNA Replication , Embryonic Development/genetics , Humans , Mammals/genetics
15.
Science ; 376(6599): eabm6380, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35587511

ABSTRACT

The molecular basis of interindividual clinical variability upon infection with Staphylococcus aureus is unclear. We describe patients with haploinsufficiency for the linear deubiquitinase OTULIN, encoded by a gene on chromosome 5p. Patients suffer from episodes of life-threatening necrosis, typically triggered by S. aureus infection. The disorder is phenocopied in patients with the 5p- (Cri-du-Chat) chromosomal deletion syndrome. OTULIN haploinsufficiency causes an accumulation of linear ubiquitin in dermal fibroblasts, but tumor necrosis factor receptor-mediated nuclear factor κB signaling remains intact. Blood leukocyte subsets are unaffected. The OTULIN-dependent accumulation of caveolin-1 in dermal fibroblasts, but not leukocytes, facilitates the cytotoxic damage inflicted by the staphylococcal virulence factor α-toxin. Naturally elicited antibodies against α-toxin contribute to incomplete clinical penetrance. Human OTULIN haploinsufficiency underlies life-threatening staphylococcal disease by disrupting cell-intrinsic immunity to α-toxin in nonleukocytic cells.


Subject(s)
Bacterial Toxins , Cri-du-Chat Syndrome , Endopeptidases , Haploinsufficiency , Hemolysin Proteins , Staphylococcal Infections , Staphylococcus aureus , Bacterial Toxins/immunology , Cri-du-Chat Syndrome/genetics , Cri-du-Chat Syndrome/immunology , Endopeptidases/genetics , Haploinsufficiency/genetics , Haploinsufficiency/immunology , Hemolysin Proteins/immunology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Immunity, Cellular/genetics , Necrosis , Staphylococcal Infections/genetics , Staphylococcal Infections/immunology , Staphylococcal Infections/pathology
16.
Blood ; 139(25): 3630-3646, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35421216

ABSTRACT

Leukemic transformation (LT) of myeloproliferative neoplasm (MPN) has a dismal prognosis and is largely fatal. Mutational inactivation of TP53 is the most common somatic event in LT; however, the mechanisms by which TP53 mutations promote LT remain unresolved. Using an allelic series of mouse models of Jak2/Trp53 mutant MPN, we identify that only biallelic inactivation of Trp53 results in LT (to a pure erythroleukemia [PEL]). This PEL arises from the megakaryocyte-erythroid progenitor population. Importantly, the bone morphogenetic protein 2/SMAD pathway is aberrantly activated during LT and results in abnormal self-renewal of megakaryocyte-erythroid progenitors. Finally, we identify that Jak2/Trp53 mutant PEL is characterized by recurrent copy number alterations and DNA damage. Using a synthetic lethality strategy, by targeting active DNA repair pathways, we show that this PEL is highly sensitive to combination WEE1 and poly(ADP-ribose) polymerase inhibition. These observations yield new mechanistic insights into the process of p53 mutant LT and offer new, clinically translatable therapeutic approaches.


Subject(s)
Myeloproliferative Disorders , Tumor Suppressor Protein p53 , Animals , Bone Morphogenetic Protein 2/genetics , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Megakaryocyte-Erythroid Progenitor Cells/metabolism , Megakaryocytes/metabolism , Mice , Mutation , Myeloproliferative Disorders/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
17.
JCI Insight ; 7(5)2022 03 08.
Article in English | MEDLINE | ID: mdl-35260534

ABSTRACT

Recent data establish a logarithmic expansion of leucine rich repeat containing G protein coupled receptor 5-positive (Lgr5+) colonic epithelial stem cells (CESCs) in human colorectal cancer (CRC). Complementary studies using the murine 2-stage azoxymethane-dextran sulfate sodium (AOM-DSS) colitis-associated tumor model indicate early acquisition of Wnt pathway mutations drives CESC expansion during adenoma progression. Here, subdivision of the AOM-DSS model into in vivo and in vitro stages revealed DSS induced physical separation of CESCs from stem cell niche cells and basal lamina, a source of Wnt signals, within hours, disabling the stem cell program. While AOM delivery in vivo under non-adenoma-forming conditions yielded phenotypically normal mucosa and organoids derived thereof, niche injury ex vivo by progressive DSS dose escalation facilitated outgrowth of Wnt-independent dysplastic organoids. These organoids contained 10-fold increased Lgr5+ CESCs with gain-of-function Wnt mutations orthologous to human CRC driver mutations. We posit CRC originates by niche injury-induced outgrowth of normally suppressed mutated stem cells, consistent with models of adaptive oncogenesis.


Subject(s)
Adenoma , Colitis , Colorectal Neoplasms , Adenoma/metabolism , Animals , Azoxymethane , Colitis/pathology , Colorectal Neoplasms/metabolism , Humans , Mice , Neoplastic Stem Cells/metabolism
18.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Article in English | MEDLINE | ID: mdl-35082152

ABSTRACT

High-grade serous ovarian carcinoma (HGSOC) is a cancer with dismal prognosis due to the limited effectiveness of existing chemo- and immunotherapies. To elucidate mechanisms mediating sensitivity or resistance to these therapies, we developed a fast and flexible autochthonous mouse model based on somatic introduction of HGSOC-associated genetic alterations into the ovary of immunocompetent mice using tissue electroporation. Tumors arising in these mice recapitulate the metastatic patterns and histological, molecular, and treatment response features of the human disease. By leveraging these models, we show that the ability to undergo senescence underlies the clinically observed increase in sensitivity of homologous recombination (HR)-deficient HGSOC tumors to platinum-based chemotherapy. Further, cGas/STING-mediated activation of a restricted senescence-associated secretory phenotype (SASP) was sufficient to induce immune infiltration and sensitize HR-deficient tumors to immune checkpoint blockade. In sum, our study identifies senescence propensity as a predictor of therapy response and defines a limited SASP profile that appears sufficient to confer added vulnerability to concurrent immunotherapy and, more broadly, provides a blueprint for the implementation of electroporation-based mouse models to reveal mechanisms of oncogenesis and therapy response in HGSOC.


Subject(s)
Antineoplastic Agents/pharmacology , Immune Checkpoint Inhibitors/pharmacology , Ovarian Neoplasms/drug therapy , Animals , Carcinoma, Ovarian Epithelial/diet therapy , Cell Line, Tumor , Disease Models, Animal , Female , Humans , Immunotherapy/methods , Mice , Mice, Inbred C57BL
19.
Curr Protoc ; 2(1): e334, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34986273

ABSTRACT

Replication timing (RT) is the temporal order in which genomic DNA is replicated during S phase. Early and late replication correlate with transcriptionally active and inactive chromatin compartments, but mechanistic links between large-scale chromosome structure, transcription, and replication are still enigmatic. A proper RT program is necessary to maintain the global epigenome that defines cell identity, suggesting that RT is critical for epigenome integrity by facilitating the assembly of different types of chromatin at different times during S phase. RT is regulated during development and has been found to be altered in disease. Thus, RT can identify stable epigenetic differences distinguishing cell types, and can be used to help stratify patient outcomes and identify markers of disease. Most methods to profile RT require thousands of S-phase cells. In cases where cells are rare (e.g., early-stage embryos or rare primary cell types) or consist of a heterogeneous mixture of cell states (e.g., differentiation intermediates), or when the interest is in determining the degree of stable epigenetic heterogeneity within a population of cells, single-cell measurements of RT are necessary. We have previously developed single cell Repli-seq, a method to measure replication timing in single cells using DNA copy number quantification. To date, however, single-cell Repli-seq suffers from relatively low throughput and high costs. Here, we describe an improved single-cell Repli-seq protocol that uses degenerate oligonucleotide-primed PCR (DOP-PCR) for uniform whole-genome amplification and uniquely barcoded primers that permit early pooling of single-cell samples into a single library preparation. We also provide a bioinformatics platform for analysis of the data. The improved throughput and decreased costs of this method relative to previously published single-cell Repli-seq protocols should make it considerably more accessible to a broad range of investigators. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Whole Genome Amplification (WGA) of single cells and sequence library construction. Basic Protocol 2: Deriving and displaying single-cell replication timing data from whole genome sequencing.


Subject(s)
DNA Replication Timing , DNA Replication , Animals , DNA , Humans , S Phase , Sequence Analysis, DNA
20.
Cancer Discov ; 12(2): 542-561, 2022 02.
Article in English | MEDLINE | ID: mdl-34551968

ABSTRACT

The degree of metastatic disease varies widely among patients with cancer and affects clinical outcomes. However, the biological and functional differences that drive the extent of metastasis are poorly understood. We analyzed primary tumors and paired metastases using a multifluorescent lineage-labeled mouse model of pancreatic ductal adenocarcinoma (PDAC)-a tumor type in which most patients present with metastases. Genomic and transcriptomic analysis revealed an association between metastatic burden and gene amplification or transcriptional upregulation of MYC and its downstream targets. Functional experiments showed that MYC promotes metastasis by recruiting tumor-associated macrophages, leading to greater bloodstream intravasation. Consistent with these findings, metastatic progression in human PDAC was associated with activation of MYC signaling pathways and enrichment for MYC amplifications specifically in metastatic patients. Collectively, these results implicate MYC activity as a major determinant of metastatic burden in advanced PDAC. SIGNIFICANCE: Here, we investigate metastatic variation seen clinically in patients with PDAC and murine PDAC tumors and identify MYC as a major driver of this heterogeneity.This article is highlighted in the In This Issue feature, p. 275.


Subject(s)
Adenocarcinoma/genetics , Carcinoma, Pancreatic Ductal/genetics , Gene Expression Regulation, Neoplastic , Genes, myc , Neoplasm Metastasis , Pancreatic Neoplasms/genetics , Adenocarcinoma/secondary , Animals , Carcinoma, Pancreatic Ductal/secondary , Disease Models, Animal , Humans , Mice , Pancreatic Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL