Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Fish Physiol Biochem ; 49(5): 883-893, 2023 Oct.
Article En | MEDLINE | ID: mdl-37537493

This study investigated the acute effects of dibutyl phthalate (DBP) exposure on energy metabolism and gill histology in zebrafish (Danio rerio). The in vitro incubation of gill tissue with 10 µM DBP for 60 min altered tissue energy supply, as shown by decreased lactate content and lactate dehydrogenase (LDH) activity. Higher concentrations of DBP (100 µM and 1 mM) increased lactate content and LDH activity; however, they blocked glucose uptake, depleted the glycogen content in cellular stores, and induced injury to the gills, as measured by LDH release to the extracellular medium. In addition, in vivo exposure of fish to 1 pM DBP for 12 h induced liver damage by increasing alanine aminotransferase (ALT) and gamma-glutamyl transferase (GGT) activities. Gill histology indicated hyperemia, lamellar fusion, lamellar telangiectasis, and necrosis. Data indicate that acute exposure of zebrafish gills to the higher DBP concentrations studied induces anaerobic cellular activity and high lactate production, causing gill damage, diminishing cell viability, and incurring liver dysfunction.


Chemical and Drug Induced Liver Injury , Zebrafish , Animals , Zebrafish/metabolism , Dibutyl Phthalate/toxicity , Dibutyl Phthalate/metabolism , Gills/metabolism , Energy Metabolism , Lactates/metabolism , Lactates/pharmacology
2.
Int J Mol Sci ; 24(15)2023 Aug 04.
Article En | MEDLINE | ID: mdl-37569815

Alzheimer's disease (AD) is the leading cause of dementia in older adults, having a significant global burden and increasing prevalence. Current treatments for AD only provide symptomatic relief and do not cure the disease. Physical activity has been extensively studied as a potential preventive measure against cognitive decline and AD. Recent research has identified a hormone called irisin, which is produced during exercise, that has shown promising effects on cognitive function. Irisin acts on the brain by promoting neuroprotection by enhancing the growth and survival of neurons. It also plays a role in metabolism, energy regulation, and glucose homeostasis. Furthermore, irisin has been found to modulate autophagy, which is a cellular process involved in the clearance of protein aggregates, which are a hallmark of AD. Additionally, irisin has been shown to protect against cell death, apoptosis, oxidative stress, and neuroinflammation, all of which are implicated in AD pathogenesis. However, further research is needed to fully understand the mechanisms and therapeutic potential of irisin in AD. Despite the current gaps in knowledge, irisin holds promise as a potential therapeutic target for slowing cognitive decline and improving quality of life in AD patients.


Alzheimer Disease , Healthy Aging , Aged , Humans , Alzheimer Disease/metabolism , Fibronectins/metabolism , Neuroprotection , Quality of Life
3.
Article En | MEDLINE | ID: mdl-35489609

This study investigated the effects of varying environmental Ca2+ concentrations on the influx of Ca2+ to the testis, testicular morphology, and liver enzymes in the zebrafish. Adult zebrafish (Danio rerio) were held in water containing low (0.02 mM), control (0. 7 mM) or high (2 mM) Ca2+ concentrations for 12 h. Testes were then incubated in vitro with 0.1 µCi/mL 45Ca2+ to measure Ca2+ influx at 30 and 60 min and qualitative and quantitative testicular histological analyses were conducted. In addition, activity of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyl transpeptidase (GGT), enzymes that indicate tissue damage, were evaluated in the liver. The testes from zebrafish exposed in vivo to low (0.02 mM) and high (2 mM) Ca2+ content water had a higher Ca2+ influx than the control group after 30 min of incubation, and at 60 min (high Ca2+ group only). There were morphological changes in the testes from the low and high Ca2+ groups including spermatozoa distributed in dense agglomerates and apoptotic cells. Furthermore, zebrafish exposed to high Ca2+ containing water had an increased density of haploid cells (spermatids and spermatozoa). In addition, both low and high Ca2+ water affected liver function by increasing ALT and GGT activities. Collectively, these studies show that alterations in calcium homeostasis in the testis, stimulation of the spermatogenic wave and hepatic injury were rapid responses to changes in the concentration of Ca2+ in the water.


Testis , Zebrafish , Animals , Calcium , Liver , Male , Spermatogenesis , Water , Zebrafish/physiology
4.
Reprod Toxicol ; 107: 10-21, 2022 01.
Article En | MEDLINE | ID: mdl-34775058

This study investigated the in vitro and short-term in vivo effects of Bisphenol A (BPA) on testicular energy metabolism and morphology in the zebrafish (Danio rerio). Testes were incubated in vitro for 1 h or fish were exposed in vivo to BPA in the tank water for 12 h. Testicular lactate, glycogen and cholesterol were measured and 14C-deoxy-d-glucose uptake and activity of lactate dehydrogenase (LDH), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were determined. In addition, testis samples from the in vivo exposures were subject to digital analysis of testicular cells using Ilastik software and the Pixel Classification module and estimation of apoptosis by Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) immunohistochemical analysis. Our results from in vitro studies showed that BPA at 10 pM and 10 µM decreased testicular lactate content, glycogen content and LDH activity, but increased testicular AST activity. In addition, only BPA at 10 pM significantly decreased testicular ALT activity and cholesterol content. However, 14C-deoxy-d-glucose uptake was not changed. Furthermore, our results from in vivo studies showed that 10 pM BPA but not 10 µM BPA reduced testicular content of lactate and glycogen. In addition, both BPA concentrations decreased AST activity, whereas only BPA at 10 µM reduced ALT activity. However, LDH activity was not changed. Additionally, both concentrations of BPA induced spermatocyte apoptosis and a decrease in the proportion of the surface area of spermatids and spermatozoa. Collectively these data suggest that short-term BPA exposure affects energy metabolism and spermatogenesis in male zebrafish.


Benzhydryl Compounds/toxicity , Endocrine Disruptors/toxicity , Phenols/toxicity , Spermatogenesis/drug effects , Testis/drug effects , Alanine Transaminase/metabolism , Animals , Apoptosis/drug effects , Aspartate Aminotransferases/metabolism , Cholesterol/metabolism , Energy Metabolism/drug effects , L-Lactate Dehydrogenase/metabolism , Male , Spermatocytes/drug effects , Testis/metabolism , Zebrafish
5.
J Gerontol A Biol Sci Med Sci ; 76(6): 991-995, 2021 05 22.
Article En | MEDLINE | ID: mdl-33249457

Folic acid (FA) supplementation is important during pregnancy to avoid malformations in the offspring. However, it is unknown if it can affect the offspring throughout their lives. To evaluate the offspring, female mother rats (dams) were separated into 5 groups: Four groups received the AIN-93 diet, divided into control and FA (5, 10, and 50 mg/kg), and an additional group received a FA-deficient diet, and the diet was performed during pregnancy and lactation. We evaluated the female offspring of these dams (at 2 and 18 months old). The aged offspring fed with FA-deficient diet presented habituation, spatial and aversive memory impairment and the FA maternal supplementation prevented this. The natural aging caused an increase in the TNF-α and IL-1ß levels in the hippocampus from 18-month-old offspring. FA maternal supplementation was able to prevent the increase of these cytokines. IL-4 levels decreased in the prefrontal cortex from aged control rats and FA prevented it. FA deficiency decreased the levels of IL-4 in the hippocampus of the young offspring. In addition, natural aging and FA deficiency decreased brain-derived neurotrophic factor levels in the hippocampus and nerve growth factor levels in the prefrontal cortex and FA supplementation prevented it. Thus, the present study shows for the first time the effect of FA maternal supplementation on memory, cytokines, and neurotrophins in the aged offspring.


Dietary Supplements , Folic Acid/therapeutic use , Inflammation/prevention & control , Memory Disorders/prevention & control , Prenatal Exposure Delayed Effects/drug therapy , Aging/drug effects , Animals , Female , Folic Acid Deficiency/complications , Hippocampus/metabolism , Inflammation/etiology , Memory Disorders/etiology , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Rats , Rats, Wistar
6.
Chemosphere ; 258: 127408, 2020 Nov.
Article En | MEDLINE | ID: mdl-32782161

This study investigates the impacts of exposure to an environment Ca2+ challenge and the mechanism of action of dibutyl phthalate (DBP) on Ca2+ influx in the gills of Danio rerio. In vitro profile of 45Ca2+ influx in gills was verified through the basal time-course. Fish were exposed to low, normal and high Ca2+ concentrations (0.02, 0.7 and 2 mM) for 12 h. So, gills were morphologically analysed and ex vivo45Ca2+ influx at 30 and 60 min was determined. For the in vitro studies, gills were treated for 60 min with DBP (1 pM, 1 nM and 1 µM) with/without blockers/activators of ionic channels, Ca2+ chelator, inhibitors of ATPases, ionic exchangers and protein kinase C to study the mechanism of DBP-induced 45Ca2+ influx. Exposure to high environmental Ca2+ augmented 45Ca2+ influx when compared to fish exposed to normal and low Ca2+ concentrations. Additionally, histopathological changes were observed in the gills of fish maintained for 12 h in low and high Ca2+. In vitro exposure of gills to DBP (1 pM) disturbed Ca2+ homeostasis. DBP stimulated 45Ca2+ influx in gills through the transitory receptor potential vanilloid 1 (TRPV1), and reverse-mode Na+/Ca2+ exchanger (NCX) activation, protein kinase C and K+ channels and sarco/endoplasmic reticulum Ca2+-ATPase (SERCA). These data suggest that in vivo short-term exposure of gills to low and high Ca2+ leads to 45Ca2+ influx and histopathological changes. Additionally, the DBP-induced rapid 45Ca2+ influx is mediated by TRPV1, NCX activation with the involvement of PKC, K+-channels and SERCA, thereby altering Ca2+ homeostasis.


Calcium Radioisotopes/metabolism , Calcium/metabolism , Dibutyl Phthalate/toxicity , Gills/drug effects , Homeostasis/drug effects , Water Pollutants, Chemical/toxicity , Zebrafish/metabolism , Animals , Calcium/toxicity , Dibutyl Phthalate/metabolism , Endoplasmic Reticulum/metabolism , Gills/metabolism , Sodium-Calcium Exchanger/metabolism , TRPV Cation Channels/metabolism , Water Pollutants, Chemical/metabolism
7.
Ecotoxicol Environ Saf ; 202: 110876, 2020 Oct 01.
Article En | MEDLINE | ID: mdl-32563953

This study investigated the acute in vitro effect of low-concentration bisphenol A (BPA) on calcium (45Ca2+) influx in zebrafish (Danio rerio) testis and examined whether intracellular Ca2+ was involved in the effects of BPA on testicular toxicity. In vitro studies on 45Ca2+ influx were performed in the testes after incubation with BPA for 30 min. Inhibitors were added 15 min before the addition of 45Ca2+ and BPA to testes to study the mechanism of action of BPA. The involvement of intracellular calcium from stores on lactate dehydrogenase (LDH) release and on triacylglycerol (TAG) content were carried out after in vitro incubation of testes with BPA for 1 h. Furthermore, gamma-glutamyl transpeptidase (GGT) and aspartate aminotransferase (AST) activities were analyzed in the liver at 1 h after in vitro BPA incubation of D. rerio. Our data show that the acute in vitro treatment of D. rerio testes with BPA at very low concentration activates plasma membrane ionic channels, such as voltage-dependent calcium channels and calcium-dependent chloride channels, and protein kinase C (PKC), which stimulates Ca2+ influx. In addition, BPA increased cytosolic Ca2+ by activating inositol triphosphate receptor (IP3R) and inhibiting sarco/endoplasmic reticulum calcium ATPase (SERCA) at the endoplasmic reticulum, contributing to intracellular Ca2+ overload. The protein kinases, PKC, MEK 1/2 and PI3K, are involved in the mechanism of action of BPA, which may indicate a crosstalk between the non-genomic initiation effects mediated by PLC/PKC/IP3R signaling and genomic responses of BPA mediated by the estrogen receptor (ESR). In vitro exposure to a higher concentration of BPA caused cell damage and plasma membrane injury with increased LDH release and TAG content; both effects were dependent on intracellular Ca2+ and mediated by IP3R. Furthermore, BPA potentially induced liver damage, as demonstrated by increased GGT activity. In conclusion, in vitro effect of BPA in a low concentration triggers cytosolic Ca2+ overload and activates downstream protein kinases pointing to a crosstalk between its non-genomic and genomic effects of BPA mediated by ESR. Moreover, in vitro exposure to a higher concentration of BPA caused intracellular Ca2+-dependent testicular cell damage and plasma membrane injury. This acute toxicity was reinforced by increased testicular LDH release and GGT activity in the liver.


Benzhydryl Compounds/toxicity , Calcium/metabolism , Phenols/toxicity , Testis/drug effects , Water Pollutants, Chemical/toxicity , Zebrafish/physiology , Animals , Cell Membrane/metabolism , Cytosol/metabolism , Endoplasmic Reticulum/metabolism , Inositol 1,4,5-Trisphosphate Receptors/antagonists & inhibitors , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Ion Channels , Male , Protein Kinase C/metabolism , Protein Kinase C/pharmacology , Signal Transduction/drug effects , Testis/metabolism , Zebrafish/metabolism
8.
Biochimie ; 175: 23-33, 2020 Aug.
Article En | MEDLINE | ID: mdl-32417457

Bis(2-ethylhexyl)phthalate (BEHP) negatively affects testicular functions in different animal species, disturbing reproductive physiology and male fertility. The present study investigated the in vitro acute effect of BEHP on the mechanism of action of ionic calcium (Ca2+) homeostasis and energy metabolism. In addition, the effect of BEHP on oxidative stress was studied in vitro and in vivo in the testis of Danio rerio (D. rerio). Testes were treated in vitro for 30 min with 1 µM BEHP for 45Ca2+ influx measurements. Testes were also incubated with 1 µM BEHP for 1 h (in vitro) or 12 h (in vivo) for the measurements of lactate content, 14C-deoxy-d-glucose uptake, lactate dehydrogenase (LDH) and gamma-glutamyl transpeptidase (GGT) activity, total reactive oxygen species (ROS) production and lipid peroxidation. In addition, the effect of BEHP (1 µM) on GGT, glutamic oxaloacetic transferase (GOT) and glutamic pyruvic transferase (GPT) activity in the liver was evaluated after in vivo treatment for 12 h. BEHP disturbs the Ca2+ balance in the testis when given acutely in vitro. BEHP stimulated Ca2+ influx occurs through L-type voltage-dependent Ca2+ channels (L-VDCC), transitory receptor potential vaniloid (TRPV1) channels, reverse-mode Na+/Ca2+ exchanger (NCX) activation and inhibition of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA). BEHP affected energy metabolism in the testis by decreasing the lactate content and LDH activity. In vitro and in vivo acute effects of BEHP promoted oxidative stress by increasing ROS production, lipid peroxidation and GGT activity in the testis. Additionally, BEHP caused liver damage by increasing GPT activity.


Calcium/metabolism , Diethylhexyl Phthalate/toxicity , Energy Metabolism/drug effects , Homeostasis/drug effects , Oxidative Stress/drug effects , Testis/metabolism , Zebrafish/metabolism , Animals , Male , Testis/pathology
9.
Metab Brain Dis ; 32(3): 811-817, 2017 06.
Article En | MEDLINE | ID: mdl-28236040

D-Galactose (D-gal) chronic administration via intraperitoneal and subcutaneous routes has been used as a model of aging and Alzheimer disease in rodents. Intraperitoneal and subcutaneous administration of D-gal causes memory impairments, a reduction in the neurogenesis of adult mice, an increase in the levels of the amyloid precursor protein and oxidative damage; However, the effects of oral D-gal remain unclear. The aim of this study was to evaluate whether the oral administration of D-gal induces abnormalities within the mitochondrial respiratory chain of rats. Male Wistar rats (4 months old) received D-gal (100 mg/kg v.o.), during the 1st, 2nd, 4th, 6th or 8th weeks by oral gavage. The activity of the mitochondrial respiratory chain complexes was measured in the 1st, 2nd, 4th, 6th and 8th weeks after the administration of D-gal. The activity of the respiratory chain complex I was found to have increased in the prefrontal cortex and hippocampus in the 1st, 6th and 8th weeks, while the activity of the respiratory chain complex II increased in the 1st, 2nd, 4th, 6th and 8th weeks within the hippocampus and in the 2nd, 4th, 6th and 8th weeks within the prefrontal cortex. The activity of complex II-III increased within the prefrontal cortex and hippocampus in each week of oral D-gal treatment. The activity of complex IV increased within the prefrontal cortex and hippocampus in the 1st, 2nd, 6th and 8th weeks of treatment. After 4 weeks of treatment the activity increased only in hippocampus. In conclusion, the present study showed that the oral administration of D-gal increased the activity of the mitochondrial respiratory chain complexes I, II, II-III and IV in the prefrontal cortex and hippocampus. Furthermore, the administration of D-gal via the oral route seems to cause the alterations in the mitochondrial respiratory complexes observed in brain neurodegeneration.


Electron Transport Complex I/metabolism , Galactose/administration & dosage , Hippocampus/metabolism , Mitochondria/metabolism , Prefrontal Cortex/metabolism , Administration, Oral , Animals , Brain/drug effects , Brain/metabolism , Galactose/toxicity , Hippocampus/drug effects , Male , Mitochondria/drug effects , Oxidative Stress/drug effects , Oxidative Stress/physiology , Prefrontal Cortex/drug effects , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism
...