Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Metab Health Dis ; 2(1): 15, 2024.
Article in English | MEDLINE | ID: mdl-38962750

ABSTRACT

Alzheimer's disease (AD) is influenced by a variety of modifiable risk factors, including a person's dietary habits. While the ketogenic diet (KD) holds promise in reducing metabolic risks and potentially affecting AD progression, only a few studies have explored KD's metabolic impact, especially on blood and cerebrospinal fluid (CSF). Our study involved participants at risk for AD, either cognitively normal or with mild cognitive impairment. The participants consumed both a modified Mediterranean Ketogenic Diet (MMKD) and the American Heart Association diet (AHAD) for 6 weeks each, separated by a 6-week washout period. We employed nuclear magnetic resonance (NMR)-based metabolomics to profile serum and CSF and metagenomics profiling on fecal samples. While the AHAD induced no notable metabolic changes, MMKD led to significant alterations in both serum and CSF. These changes included improved modifiable risk factors, like increased HDL-C and reduced BMI, reversed serum metabolic disturbances linked to AD such as a microbiome-mediated increase in valine levels, and a reduction in systemic inflammation. Additionally, the MMKD was linked to increased amino acid levels in the CSF, a breakdown of branched-chain amino acids (BCAAs), and decreased valine levels. Importantly, we observed a strong correlation between metabolic changes in the CSF and serum, suggesting a systemic regulation of metabolism. Our findings highlight that MMKD can improve AD-related risk factors, reverse some metabolic disturbances associated with AD, and align metabolic changes across the blood-CSF barrier.

2.
Nat Commun ; 15(1): 4862, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862464

ABSTRACT

As spaceflight becomes more common with commercial crews, blood-based measures of crew health can guide both astronaut biomedicine and countermeasures. By profiling plasma proteins, metabolites, and extracellular vesicles/particles (EVPs) from the SpaceX Inspiration4 crew, we generated "spaceflight secretome profiles," which showed significant differences in coagulation, oxidative stress, and brain-enriched proteins. While >93% of differentially abundant proteins (DAPs) in vesicles and metabolites recovered within six months, the majority (73%) of plasma DAPs were still perturbed post-flight. Moreover, these proteomic alterations correlated better with peripheral blood mononuclear cells than whole blood, suggesting that immune cells contribute more DAPs than erythrocytes. Finally, to discern possible mechanisms leading to brain-enriched protein detection and blood-brain barrier (BBB) disruption, we examined protein changes in dissected brains of spaceflight mice, which showed increases in PECAM-1, a marker of BBB integrity. These data highlight how even short-duration spaceflight can disrupt human and murine physiology and identify spaceflight biomarkers that can guide countermeasure development.


Subject(s)
Blood Coagulation , Blood-Brain Barrier , Brain , Homeostasis , Oxidative Stress , Space Flight , Animals , Humans , Brain/metabolism , Blood-Brain Barrier/metabolism , Mice , Blood Coagulation/physiology , Male , Secretome/metabolism , Mice, Inbred C57BL , Extracellular Vesicles/metabolism , Proteomics/methods , Biomarkers/metabolism , Biomarkers/blood , Female , Adult , Blood Proteins/metabolism , Middle Aged , Leukocytes, Mononuclear/metabolism , Proteome/metabolism
3.
Alzheimers Dement ; 20(6): 3987-4001, 2024 06.
Article in English | MEDLINE | ID: mdl-38676929

ABSTRACT

INTRODUCTION: Increasing evidence suggests that metabolic impairments contribute to early Alzheimer's disease (AD) mechanisms and subsequent dementia. Signals in metabolic pathways conserved across species can facilitate translation. METHODS: We investigated differences in serum and brain metabolites between the early-onset 5XFAD and late-onset LOAD1 (APOE4.Trem2*R47H) mouse models of AD to C57BL/6J controls at 6 months of age. RESULTS: We identified sex differences for several classes of metabolites, such as glycerophospholipids, sphingolipids, and amino acids. Metabolic signatures were notably different between brain and serum in both mouse models. The 5XFAD mice exhibited stronger differences in brain metabolites, whereas LOAD1 mice showed more pronounced differences in serum. DISCUSSION: Several of our findings were consistent with results in humans, showing glycerophospholipids reduction in serum of apolipoprotein E (apoE) ε4 carriers and replicating the serum metabolic imprint of the APOE ε4 genotype. Our work thus represents a significant step toward translating metabolic dysregulation from model organisms to human AD. HIGHLIGHTS: This was a metabolomic assessment of two mouse models relevant to Alzheimer's disease. Mouse models exhibit broad sex-specific metabolic differences, similar to human study cohorts. The early-onset 5XFAD mouse model primarily alters brain metabolites while the late-onset LOAD1 model primarily changes serum metabolites. Apolipoprotein E (apoE) ε4 mice recapitulate glycerophospolipid signatures of human APOE ε4 carriers in both brain and serum.


Subject(s)
Alzheimer Disease , Brain , Disease Models, Animal , Metabolomics , Mice, Inbred C57BL , Mice, Transgenic , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/blood , Alzheimer Disease/genetics , Brain/metabolism , Mice , Male , Female , Metabolome , Sex Characteristics , Humans , Apolipoprotein E4/genetics
4.
Bioinformatics ; 40(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38485697

ABSTRACT

SUMMARY: Accurate clustering of mixed data, encompassing binary, categorical, and continuous variables, is vital for effective patient stratification in clinical questionnaire analysis. To address this need, we present longmixr, a comprehensive R package providing a robust framework for clustering mixed longitudinal data using finite mixture modeling techniques. By incorporating consensus clustering, longmixr ensures reliable and stable clustering results. Moreover, the package includes a detailed vignette that facilitates cluster exploration and visualization. AVAILABILITY AND IMPLEMENTATION: The R package is freely available at https://cran.r-project.org/package=longmixr with detailed documentation, including a case vignette, at https://cellmapslab.github.io/longmixr/.


Subject(s)
Software , Humans , Cross-Sectional Studies , Cluster Analysis , Surveys and Questionnaires
5.
bioRxiv ; 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38187571

ABSTRACT

INTRODUCTION: Increasing evidence suggests that metabolic impairments contribute to early Alzheimer's disease (AD) mechanisms and subsequent dementia. Signals in metabolic pathways conserved across species provides a promising entry point for translation. METHODS: We investigated differences of serum and brain metabolites between the early-onset 5XFAD and late-onset LOAD1 (APOE4.Trem2*R47H) mouse models of AD to C57BL/6J controls at six months of age. RESULTS: We identified sex differences for several classes of metabolites, such as glycerophospholipids, sphingolipids, and amino acids. Metabolic signatures were notably different between brain and serum in both mouse models. The 5XFAD mice exhibited stronger differences in brain metabolites, whereas LOAD1 mice showed more pronounced differences in serum. DISCUSSION: Several of our findings were consistent with results in humans, showing glycerophospholipids reduction in serum of APOE4 carriers and replicating the serum metabolic imprint of the APOE4 genotype. Our work thus represents a significant step towards translating metabolic dysregulation from model organisms to human AD.

SELECTION OF CITATIONS
SEARCH DETAIL