Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Nucleic Acids Res ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801077

ABSTRACT

Acute myeloid leukemia (AML) is a hematological malignancy characterized by abnormal proliferation and accumulation of immature myeloid cells in the bone marrow. Inflammation plays a crucial role in AML progression, but excessive activation of cell-intrinsic inflammatory pathways can also trigger cell death. IRF2BP2 is a chromatin regulator implicated in AML pathogenesis, although its precise role in this disease is not fully understood. In this study, we demonstrate that IRF2BP2 interacts with the AP-1 heterodimer ATF7/JDP2, which is involved in activating inflammatory pathways in AML cells. We show that IRF2BP2 is recruited by the ATF7/JDP2 dimer to chromatin and counteracts its gene-activating function. Loss of IRF2BP2 leads to overactivation of inflammatory pathways, resulting in strongly reduced proliferation. Our research indicates that a precise equilibrium between activating and repressive transcriptional mechanisms creates a pro-oncogenic inflammatory environment in AML cells. The ATF7/JDP2-IRF2BP2 regulatory axis is likely a key regulator of this process and may, therefore, represent a promising therapeutic vulnerability for AML. Thus, our study provides new insights into the molecular mechanisms underlying AML pathogenesis and identifies a potential therapeutic target for AML treatment.

2.
EMBO Rep ; 23(12): e54685, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36215678

ABSTRACT

Increased lactate levels in the tissue microenvironment are a well-known feature of chronic inflammation. However, the role of lactate in regulating T cell function remains controversial. Here, we demonstrate that extracellular lactate predominantly induces deregulation of the Th17-specific gene expression program by modulating the metabolic and epigenetic status of Th17 cells. Following lactate treatment, Th17 cells significantly reduced their IL-17A production and upregulated Foxp3 expression through ROS-driven IL-2 secretion. Moreover, we observed increased levels of genome-wide histone H3K18 lactylation, a recently described marker for active chromatin in macrophages, in lactate-treated Th17 cells. In addition, we show that high lactate concentrations suppress Th17 pathogenicity during intestinal inflammation in mice. These results indicate that lactate is capable of reprogramming pro-inflammatory T cell phenotypes into regulatory T cells.


Subject(s)
Lactic Acid , Th17 Cells , Animals , Mice , Epigenomics
3.
Front Cell Dev Biol ; 10: 941493, 2022.
Article in English | MEDLINE | ID: mdl-36172281

ABSTRACT

Rett syndrome is a human intellectual disability disorder that is associated with mutations in the X-linked MECP2 gene. The epigenetic reader MeCP2 binds to methylated cytosines on the DNA and regulates chromatin organization. We have shown previously that MECP2 Rett syndrome missense mutations are impaired in chromatin binding and heterochromatin reorganization. Here, we performed a proteomics analysis of post-translational modifications of MeCP2 isolated from adult mouse brain. We show that MeCP2 carries various post-translational modifications, among them phosphorylation on S80 and S421, which lead to minor changes in either heterochromatin binding kinetics or clustering. We found that MeCP2 is (di)methylated on several arginines and that this modification alters heterochromatin organization. Interestingly, we identified the Rett syndrome mutation site R106 as a dimethylation site. In addition, co-expression of protein arginine methyltransferases (PRMT)1 and PRMT6 lead to a decrease of heterochromatin clustering. Altogether, we identified and validated novel modifications of MeCP2 in the brain and show that these can modulate its ability to bind as well as reorganize heterochromatin, which may play a role in the pathology of Rett syndrome.

4.
Sci Transl Med ; 14(648): eabe5407, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35675437

ABSTRACT

Phenotypic alterations in resident vascular cells contribute to the vascular remodeling process in diseases such as pulmonary (arterial) hypertension [P(A)H]. How the molecular interplay between transcriptional coactivators, transcription factors (TFs), and chromatin state alterations facilitate the maintenance of persistently activated cellular phenotypes that consequently aggravate vascular remodeling processes in PAH remains poorly explored. RNA sequencing (RNA-seq) in pulmonary artery fibroblasts (FBs) from adult human PAH and control lungs revealed 2460 differentially transcribed genes. Chromatin immunoprecipitation sequencing (ChIP-seq) revealed extensive differential distribution of transcriptionally accessible chromatin signatures, with 4152 active enhancers altered in PAH-FBs. Integrative analysis of RNA-seq and ChIP-seq data revealed that the transcriptional signatures for lung morphogenesis were epigenetically derepressed in PAH-FBs, including coexpression of T-box TF 4 (TBX4), TBX5, and SRY-box TF 9 (SOX9), which are involved in the early stages of lung development. These TFs were expressed in mouse fetuses and then repressed postnatally but were maintained in persistent PH of the newborn and reexpressed in adult PAH. Silencing of TBX4, TBX5, SOX9, or E1A-associated protein P300 (EP300) by RNA interference or small-molecule compounds regressed PAH phenotypes and mesenchymal signatures in arterial FBs and smooth muscle cells. Pharmacological inhibition of the P300/CREB-binding protein complex reduced the remodeling of distal pulmonary vessels, improved hemodynamics, and reversed established PAH in three rodent models in vivo, as well as reduced vascular remodeling in precision-cut tissue slices from human PAH lungs ex vivo. Epigenetic reactivation of TFs associated with lung development therefore underlies PAH pathogenesis, offering therapeutic opportunities.


Subject(s)
Hypertension, Pulmonary , Animals , Chromatin/metabolism , Fetus/metabolism , Humans , Lung/pathology , Mice , Pulmonary Artery/pathology , RNA Interference , Transcription Factors/metabolism , Vascular Remodeling/genetics
5.
Cell Death Differ ; 29(11): 2163-2176, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35459909

ABSTRACT

The processes leading from disturbed B-cell development to adult B-cell progenitor acute lymphoblastic leukemia (BCP-ALL) remain poorly understood. Here, we describe Irf4-/- mice as prone to developing BCP-ALL with age. Irf4-/- preB-I cells exhibited impaired differentiation but enhanced proliferation in response to IL-7, along with reduced retention in the IL-7 providing bone marrow niche due to decreased CXCL12 responsiveness. Thus selected, preB-I cells acquired Jak3 mutations, probably following irregular AID activity, resulting in malignant transformation. We demonstrate heightened IL-7 sensitivity due to Jak3 mutants, devise a model to explain it, and describe structural and functional similarities to Jak2 mutations often occurring in human Ph-like ALL. Finally, targeting JAK signaling with Ruxolitinib in vivo prolonged survival of mice bearing established Irf4-/- leukemia. Intriguingly, organ infiltration including leukemic meningeosis was selectively reduced without affecting blood blast counts. In this work, we present spontaneous leukemogenesis following IRF4 deficiency with potential implications for high-risk BCP-ALL in adult humans.


Subject(s)
Burkitt Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Adult , Animals , Humans , Mice , B-Lymphocytes , Burkitt Lymphoma/pathology , Interleukin-7/genetics , Janus Kinase 3/genetics , Mutation/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Signal Transduction
6.
EMBO J ; 40(13): e106777, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33999432

ABSTRACT

The p14ARF protein is a well-known regulator of p53-dependent and p53-independent tumor-suppressive activities. In unstressed cells, p14ARF is predominantly sequestered in the nucleoli, bound to its nucleolar interaction partner NPM. Upon genotoxic stress, p14ARF undergoes an immediate redistribution to the nucleo- and cytoplasm, where it promotes activation of cell cycle arrest and apoptosis. Here, we identify p14ARF as a novel interaction partner and substrate of PRMT1 (protein arginine methyltransferase 1). PRMT1 methylates several arginine residues in the C-terminal nuclear/nucleolar localization sequence (NLS/NoLS) of p14ARF . In the absence of cellular stress, these arginines are crucial for nucleolar localization of p14ARF . Genotoxic stress causes augmented interaction between PRMT1 and p14ARF , accompanied by arginine methylation of p14ARF . PRMT1-dependent NLS/NoLS methylation promotes the release of p14ARF from NPM and nucleolar sequestration, subsequently leading to p53-independent apoptosis. This PRMT1-p14ARF cooperation is cancer-relevant and indicative for PDAC (pancreatic ductal adenocarcinoma) prognosis and chemotherapy response of pancreatic tumor cells. Our data reveal that PRMT1-mediated arginine methylation is an important trigger for p14ARF 's stress-induced tumor-suppressive function.


Subject(s)
Pancreatic Neoplasms/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Repressor Proteins/metabolism , Tumor Suppressor Protein p14ARF/metabolism , Animals , Apoptosis/physiology , Cell Cycle/physiology , Cell Line , Cell Line, Tumor , Cell Nucleolus/metabolism , Cell Nucleus/metabolism , HEK293 Cells , HeLa Cells , Humans , Neoplasm Proteins/metabolism , Nuclear Proteins/metabolism , Pancreatic Neoplasms/pathology , Prognosis , Sf9 Cells , Tumor Suppressor Protein p53/metabolism , Pancreatic Neoplasms
7.
FEBS J ; 288(19): 5668-5691, 2021 10.
Article in English | MEDLINE | ID: mdl-33764612

ABSTRACT

Protein arginine methyltransferase 6 (PRMT6) catalyses the asymmetric dimethylation of arginines on numerous substrate proteins within the human cell. In particular, PRMT6 methylates histone H3 arginine 2 (H3R2) which affects both gene repression and activation. However, the substrate specificity of PRMT6 has not been comprehensively analysed. Here, we systematically characterise the substrate recognition motif of PRMT6, finding that it has broad specificity and recognises the RG motif. Working with a H3 tail peptide as a template, on which we made 204 amino acid substitutions, we use targeted mass spectrometry to measure their effect on PRMT6 in vitro activity. We first show that PRMT6 methylates R2 and R8 in the H3 peptide, although H3R8 is methylated with lower efficiency and is not an in vivo PRMT6 substrate. We then quantify the effect of 194 of these amino acid substitutions on methylation at both H3R2 and H3R8. In both cases, we find that PRMT6 tolerates essentially any amino acid substitution in the H3 peptide, but that positively charged and bulky residues are preferred near the target arginine. We show that PRMT6 also has preference for glycine, but only in the position immediately following the target arginine. This indicates that PRMT6 recognises the RG motif rather than the RGG motif. We further confirm this preference for the RG motif on another PRMT6 substrate, histone H4R3. This broad specificity and recognition of RG rather than RGG are distinctive among the PRMT family and has implications for the development of drugs to selectively target PRMT6. DATABASES: Panorama Public (https://panoramaweb.org/PRMT6motif.url); ProteomeXchange (PXD016711).


Subject(s)
Amino Acid Motifs/genetics , Amino Acid Substitution/genetics , Nuclear Proteins/genetics , Peptides/genetics , Protein-Arginine N-Methyltransferases/genetics , Arginine/genetics , Histones/genetics , Humans , Methylation , Protein Processing, Post-Translational , Substrate Specificity/genetics
8.
Br J Pharmacol ; 178(1): 54-71, 2021 01.
Article in English | MEDLINE | ID: mdl-31749139

ABSTRACT

Epigenetic mechanisms, including DNA methylation and histone post-translational modifications (PTMs), have been known to regulate chromatin structure and lineage-specific gene expression during cardiovascular development and disease. However, alterations in the landscape of histone PTMs and their contribution to the pathogenesis of incurable cardiovascular diseases such as pulmonary hypertension (PH) and associated right heart failure (RHF) remain largely unexplored. This review focusses on the studies in PH and RHF that investigated the gene families that write (histone acetyltransferases), read (bromodomain-containing proteins) or erase (histone deacetylases [HDACs] and sirtuins [SIRT]) acetyl moieties from the ε-amino group of lysine residues of histones and non-histone proteins. Analysis of cells and tissues isolated from the in vivo preclinical models of PH and human pulmonary arterial hypertension not only confirmed significant alterations in the expression levels of multiple HDACs, SIRT1, SIRT3 and BRD4 proteins but also demonstrated their strong association to proliferative, inflammatory and fibrotic phenotypes linked to the pathological vascular remodelling process. Due to the reversible nature of post-translational protein acetylation, the therapeutic efficacy of numerous small-molecule inhibitors (vorinostat, valproic acid, sodium butyrate, mocetinostat, entinostat, tubastatin A, apabetalone, JQ1 and resveratrol) have been evaluated in different preclinical models of cardiovascular disease, which revealed the promising therapeutic benefits of targeting histone acetylation pathways in the attenuation of cardiac hypertrophy, fibrosis, left heart dysfunction, PH and RHF. This review also emphasizes the need for deeper molecular insights into the contribution of epigenetic changes to PH pathogenesis and therapeutic evaluation of isoform-specific modulation in ex vivo and in vivo models of PH and RHF. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.


Subject(s)
Histones , Hypertension, Pulmonary , Acetylation , Cell Cycle Proteins , Histones/metabolism , Humans , Hypertension, Pulmonary/drug therapy , Hypertrophy, Right Ventricular , Nuclear Proteins , Protein Processing, Post-Translational , Transcription Factors
9.
Sci Rep ; 10(1): 12864, 2020 07 30.
Article in English | MEDLINE | ID: mdl-32733053

ABSTRACT

Pharmacological modulation of class I histone deacetylases (HDAC) has been evaluated as a therapeutic strategy for pulmonary hypertension (PH) in experimental models of PH. However, information of their expression, regulation and transcriptional targets in human PH and the therapeutic potential of isoform-selective enzyme modulation are lacking. Comprehensive analysis of expression and regulation of class I HDACs (HDAC1, HDAC2, HDAC3 and HDAC8) was performed in cardiopulmonary tissues and adventitial fibroblasts isolated from pulmonary arteries (PAAF) of idiopathic pulmonary arterial hypertension (IPAH) patients and healthy donors. Cellular functions and transcriptional targets of HDAC enzymes were investigated. Therapeutic effects of pan-HDAC (Vorinostat), class-selective (VPA) and isoform-selective (CAY10398, Romidepsin, PCI34051) HDAC inhibitors were evaluated ex vivo (IPAH-PAAF, IPAH-PASMC) and in vivo (rat chronic hypoxia-induced PH and zebrafish angiogenesis). Our screening identifies dysregulation of class I HDAC isoforms in IPAH. Particularly, HDAC1 and HDAC8 were consistently increased in IPAH-PAs and IPAH-PAAFs, whereas HDAC2 and HDAC8 showed predominant localization with ACTA2-expressing cells in extensively remodeled IPAH-PAs. Hypoxia not only significantly modulated protein levels of deacetylase (HDAC8), but also significantly caused dynamic changes in the global histone lysine acetylation levels (H3K4ac, H3K9/K14ac and H3K27ac). Importantly, isoform-specific RNA-interference revealed that HDAC isoforms regulate distinct subset of transcriptome in IPAH-PAAFs. Reduced transcript levels of KLF2 in IPAH-PAAFs was augmented by HDAC8 siRNA and HDAC inhibitors, which also attenuated IPAH-associated hyperproliferation and apoptosis-resistance ex vivo, and mitigated chronic hypoxia-induced established PH in vivo, at variable degree. Class I HDAC isoforms are significantly dysregulated in human PAH. Isoform-selective HDAC inhibition is a viable approach to circumvent off-target effects.


Subject(s)
Histone Deacetylases/therapeutic use , Hypertension, Pulmonary/drug therapy , Animals , Cells, Cultured , Depsipeptides/chemistry , Depsipeptides/pharmacology , Depsipeptides/therapeutic use , Histone Deacetylases/chemistry , Histone Deacetylases/pharmacology , Humans , In Vitro Techniques , Isoenzymes , Rats , Structure-Activity Relationship , Transcriptome/drug effects , Vorinostat/chemistry , Vorinostat/pharmacology , Vorinostat/therapeutic use , Zebrafish
10.
Methods ; 175: 53-65, 2020 03 15.
Article in English | MEDLINE | ID: mdl-31542509

ABSTRACT

Among the widespread and increasing number of identified post-translational modifications (PTMs), arginine methylation is catalyzed by the protein arginine methyltransferases (PRMTs) and regulates fundamental processes in cells, such as gene regulation, RNA processing, translation, and signal transduction. As epigenetic regulators, PRMTs play key roles in pluripotency, differentiation, proliferation, survival, and apoptosis, which are essential biological programs leading to development, adult homeostasis but also pathological conditions including cancer. A full understanding of the molecular mechanisms that underlie PRMT-mediated gene regulation requires the genome wide mapping of each player, i.e., PRMTs, their substrates and epigenetic marks, methyl-marks readers as well as interaction partners, in a thorough and unambiguous manner. However, despite the tremendous advances in high throughput sequencing technologies and the numerous efforts from the scientific community, the epigenomic profiling of PRMTs as well as their histone and non-histone substrates still remains a big challenge owing to obvious limitations in tools and methodologies. This review will summarize the present knowledge about the genome wide mapping of PRMTs and their substrates as well as the technical approaches currently in use. The limitations and pitfalls of the technical tools along with conventional approaches will be then discussed in detail. Finally, potential new strategies for chromatin profiling of PRMTs and histone substrates will be proposed and described.


Subject(s)
Chromatin Immunoprecipitation/methods , Epigenome , Epigenomics/methods , Histones/metabolism , Protein Processing, Post-Translational , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Protein-Arginine N-Methyltransferases/metabolism , Animals , Arginine/metabolism , Chromatin/enzymology , Chromatin/metabolism , Enzyme Inhibitors/chemistry , Histones/chemistry , Humans , Methylation , Mutation , Nucleosomes/enzymology , Nucleosomes/metabolism , Protein-Arginine N-Methyltransferases/chemistry , Protein-Arginine N-Methyltransferases/genetics
11.
Cell Rep ; 24(12): 3339-3352, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30232013

ABSTRACT

Protein arginine methyltransferase 6 (PRMT6) catalyzes asymmetric dimethylation of histone H3 at arginine 2 (H3R2me2a). This mark has been reported to associate with silent genes. Here, we use a cell model of neural differentiation, which upon PRMT6 knockout exhibits proliferation and differentiation defects. Strikingly, we detect PRMT6-dependent H3R2me2a at active genes, both at promoter and enhancer sites. Loss of H3R2me2a from promoter sites leads to enhanced KMT2A binding and H3K4me3 deposition together with increased target gene transcription, supporting a repressive nature of H3R2me2a. At enhancers, H3R2me2a peaks co-localize with the active enhancer marks H3K4me1 and H3K27ac. Here, loss of H3R2me2a results in reduced KMT2D binding and H3K4me1/H3K27ac deposition together with decreased transcription of associated genes, indicating that H3R2me2a also exerts activation functions. Our work suggests that PRMT6 via H3R2me2a interferes with the deposition of adjacent histone marks and modulates the activity of important differentiation-associated genes by opposing transcriptional effects.


Subject(s)
Histone Code , Histones/metabolism , Nuclear Proteins/genetics , Protein Processing, Post-Translational , Protein-Arginine N-Methyltransferases/genetics , Transcriptional Activation , Animals , Enhancer Elements, Genetic , HEK293 Cells , HeLa Cells , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/chemistry , Humans , Methylation , Mice , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Neurogenesis/genetics , Nuclear Proteins/metabolism , Protein Binding , Protein-Arginine N-Methyltransferases/metabolism
12.
Oncotarget ; 9(32): 22423-22435, 2018 Apr 27.
Article in English | MEDLINE | ID: mdl-29854289

ABSTRACT

Acute myeloid leukemia (AML) arises through clonal expansion of transformed myeloid progenitor cells. The SKI proto-oncogene is highly upregulated in different solid tumors and leukemic cells, but little is known about its transcriptional regulation during leukemogenesis. MYB is an important hematopoietic transcription factor involved in proliferation as well as differentiation and upregulated in most human acute leukemias. Here, we find that MYB protein binds within the regulatory region of the SKI gene in AML cells. Reporter gene assays using MYB binding sites present in the SKI gene locus show MYB-dependent transcriptional activation. SiRNA-mediated depletion of MYB in leukemic cell lines reveals that MYB is crucial for SKI gene expression. Consistently, we observed a positive correlation of MYB and SKI expression in leukemic cell lines and in samples of AML patients. Moreover, MYB and SKI both were downregulated by treatment with histone deacetylase inhibitors. Strikingly, differentiation of AML cells induced by depletion of MYB is attenuated by overexpression of SKI. Our findings identify SKI as a novel MYB target gene, relevant for the MYB-induced differentiation block in leukemic cells.

13.
Nucleic Acids Res ; 46(7): 3412-3428, 2018 04 20.
Article in English | MEDLINE | ID: mdl-29471413

ABSTRACT

SKI is a transcriptional co-regulator and overexpressed in various human tumors, for example in acute myeloid leukemia (AML). SKI contributes to the origin and maintenance of the leukemic phenotype. Here, we use ChIP-seq and RNA-seq analysis to identify the epigenetic alterations induced by SKI overexpression in AML cells. We show that approximately two thirds of differentially expressed genes are up-regulated upon SKI deletion, of which >40% harbor SKI binding sites in their proximity, primarily in enhancer regions. Gene ontology analysis reveals that many of the differentially expressed genes are annotated to hematopoietic cell differentiation and inflammatory response, corroborating our finding that SKI contributes to a myeloid differentiation block in HL60 cells. We find that SKI peaks are enriched for RUNX1 consensus motifs, particularly in up-regulated SKI targets upon SKI deletion. RUNX1 ChIP-seq displays that nearly 70% of RUNX1 binding sites overlap with SKI peaks, mainly at enhancer regions. SKI and RUNX1 occupy the same genomic sites and cooperate in gene silencing. Our work demonstrates for the first time the predominant co-repressive function of SKI in AML cells on a genome-wide scale and uncovers the transcription factor RUNX1 as an important mediator of SKI-dependent transcriptional repression.


Subject(s)
Core Binding Factor Alpha 2 Subunit/genetics , DNA-Binding Proteins/metabolism , Leukemia, Myeloid, Acute/genetics , Proto-Oncogene Proteins/metabolism , Regulatory Elements, Transcriptional/genetics , Binding Sites/genetics , DNA-Binding Proteins/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/genetics , Gene Silencing , Genes/genetics , HL-60 Cells , Humans , Leukemia, Myeloid, Acute/pathology , Proto-Oncogene Proteins/genetics , Transcriptional Activation/genetics , Transcriptome/genetics
14.
FEBS Open Bio ; 7(12): 1909-1923, 2017 12.
Article in English | MEDLINE | ID: mdl-29226078

ABSTRACT

Protein arginine methyltransferase 4 (PRMT4) is an essential epigenetic regulator of fundamental and conserved processes during vertebrate development, such as pluripotency and differentiation. Surprisingly, PRMT4 homologs have been identified in nearly all vertebrate classes except the avian genome. This raises the possibility that in birds PRMT4 functions are taken over by other PRMT family members. Here, we reveal the existence of a bona fide PRMT4 homolog in the chicken, Gallus gallus. Using a biochemical approach, we initially purified a putative chicken PRMT4 protein and thus provided the first evidence for the presence of an endogenous PRMT4-specific enzymatic activity toward histone H3 arginine 17 (H3R17) in avian cells. We then isolated a G. gallus PRMT4 (ggPRMT4) transcript encompassing the complete open reading frame. Recombinant ggPRMT4 possesses intrinsic methyltransferase activity toward H3R17. CRISPR/Cas9-mediated deletion of ggPRMT4 demonstrated that the transcript identified here encodes avian PRMT4. Combining protein-protein docking and homology modeling based on published crystal structures of murine PRMT4, we found a strong structural similarity of the catalytic core domain between chicken and mammalian PRMT4. Strikingly, in silico structural comparison of the N-terminal Pleckstrin homology (PH) domain of avian and murine PRMT4 identified strictly conserved amino acids that are involved in an interaction interface toward the catalytic core domain, facilitating for the first time a prediction of the relative spatial arrangement of these two domains. Our novel findings are particularly exciting in light of the essential function of the PH domain in substrate recognition and methylation by PRMT4.

15.
PLoS One ; 11(2): e0148892, 2016.
Article in English | MEDLINE | ID: mdl-26848759

ABSTRACT

Protein arginine methyltransferase 6 (PRMT6) catalyses asymmetric dimethylation of histone H3 at arginine 2 (H3R2me2a), which has been shown to impede the deposition of histone H3 lysine 4 trimethylation (H3K4me3) by blocking the binding and activity of the MLL1 complex. Importantly, the genomic occurrence of H3R2me2a has been found to coincide with histone H3 lysine 27 trimethylation (H3K27me3), a repressive histone mark generated by the Polycomb repressive complex 2 (PRC2). Therefore, we investigate here a putative crosstalk between PRMT6- and PRC-mediated repression in a cellular model of neuronal differentiation. We show that PRMT6 and subunits of PRC2 as well as PRC1 are bound to the same regulatory regions of rostral HOXA genes and that they control the differentiation-associated activation of these genes. Furthermore, we find that PRMT6 interacts with subunits of PRC1 and PRC2 and that depletion of PRMT6 results in diminished PRC1/PRC2 and H3K27me3 occupancy and in increased H3K4me3 levels at these target genes. Taken together, our data uncover a novel, additional mechanism of how PRMT6 contributes to gene repression by cooperating with Polycomb proteins.


Subject(s)
Gene Expression Regulation , Homeodomain Proteins/genetics , Nuclear Proteins/physiology , Polycomb-Group Proteins/physiology , Protein-Arginine N-Methyltransferases/physiology , Cell Differentiation/genetics , Cell Line , HEK293 Cells , Histones/metabolism , Homeodomain Proteins/metabolism , Humans , Neurons/cytology , Neurons/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Polycomb-Group Proteins/metabolism , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism
16.
Nat Commun ; 6: 8576, 2015 Oct 13.
Article in English | MEDLINE | ID: mdl-26815406

ABSTRACT

Regulatory T-cells induced via IL-2 and TGFß in vitro (iTreg) suppress immune cells and are potential therapeutics during autoimmunity. However, several reports described their re-differentiation into pathogenic cells in vivo and loss of their key functional transcription factor (TF) FOXP3 after T-cell antigen receptor (TCR)-signalling in vitro. Here, we show that TCR-activation antagonizes two necessary TFs for foxp3 gene transcription, which are themselves regulated by phosphorylation. Although the tyrosine phosphatase PTPN2 is induced to restrain IL-2-mediated phosphorylation of the TF STAT5, expression of the TF FOXO1 is downregulated and miR-182, a suppressor of FOXO1 expression, is upregulated. TGFß counteracts the FOXP3-depleting TCR-signal by reassuring FOXO1 expression and by re-licensing STAT5 phosphorylation. Overexpressed phosphorylation-independent active versions of FOXO1 and STAT5 or knockdown of PTPN2 restores FOXP3 expression despite TCR-signal and absence of TGFß. This study suggests novel targets for stabilisation and less dangerous application of iTreg during devastating inflammation.


Subject(s)
Forkhead Transcription Factors/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes, Regulatory/metabolism , Animals , Blotting, Western , CD4-Positive T-Lymphocytes/metabolism , Cells, Cultured , Female , Flow Cytometry , Forkhead Box Protein O1 , Forkhead Transcription Factors/genetics , Male , Mice , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , Receptors, Antigen, T-Cell/genetics
17.
PLoS Genet ; 9(3): e1003343, 2013.
Article in English | MEDLINE | ID: mdl-23505388

ABSTRACT

Protein arginine methyltransferase 4 (PRMT4)-dependent methylation of arginine residues in histones and other chromatin-associated proteins plays an important role in the regulation of gene expression. However, the exact mechanism of how PRMT4 activates transcription remains elusive. Here, we identify the chromatin remodeller Mi2α as a novel interaction partner of PRMT4. PRMT4 binds Mi2α and its close relative Mi2ß, but not the other components of the repressive Mi2-containing NuRD complex. In the search for the biological role of this interaction, we find that PRMT4 and Mi2α/ß interact with the transcription factor c-Myb and cooperatively coactivate c-Myb target gene expression in haematopoietic cell lines. This coactivation requires the methyltransferase and ATPase activity of PRMT4 and Mi2, respectively. Chromatin immunoprecipitation analysis shows that c-Myb target genes are direct transcriptional targets of PRMT4 and Mi2. Knockdown of PRMT4 or Mi2α/ß in haematopoietic cells of the erythroid lineage results in diminished transcriptional induction of c-Myb target genes, attenuated cell growth and survival, and deregulated differentiation resembling the effects caused by c-Myb depletion. These findings reveal an important and so far unknown connection between PRMT4 and the chromatin remodeller Mi2 in c-Myb signalling.


Subject(s)
Autoantigens , Chromatin/genetics , Mi-2 Nucleosome Remodeling and Deacetylase Complex , Protein-Arginine N-Methyltransferases , Proto-Oncogene Proteins c-myb , Autoantigens/genetics , Autoantigens/metabolism , Bone Marrow Cells , Cell Line , Chromatin Assembly and Disassembly/genetics , Gene Expression Regulation , Histones/genetics , Histones/metabolism , Humans , Methylation , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Proto-Oncogene Proteins c-myb/genetics , Proto-Oncogene Proteins c-myb/metabolism , Transcriptional Activation
18.
Nucleic Acids Res ; 40(19): 9522-33, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22904088

ABSTRACT

The protein arginine methyltransferase 6 (PRMT6) is a coregulator of gene expression and executes its repressing as well as activating function by asymmetric dimethylation of histone H3 at R2 (H3 R2me2a). Given that elevated expression levels of PRMT6 have been reported in various cancer types, we explore here its role in cell proliferation and senescence. We find that knockdown of PRMT6 results in proliferation defects of transformed as well as non-transformed cells, causes G1-phase arrest and induces senescence. This phenotype is accompanied by transcriptional upregulation of important cell cycle regulators, most prominently the cyclin-dependent kinase (CDK) inhibitor gene p21 (p21(CIP1/WAF1), CDKN1A) and p16 (p16(INK4A), CDKN2A). Chromatin immuno-precipitation analysis reveals that the p21 gene is a direct target of PRMT6 and the corresponding histone mark H3 R2me2a. Using a cell model of oncogene-induced senescence (OIS), in which p21 is an essential activator of the senescent phenotype, we show that PRMT6 expression declines upon induction of senescence and conversely p21 gene expression increases. Moreover, overexpression of PRMT6 leads to reduced levels of OIS. These findings indicate that the transcriptional repressor activity of PRMT6 facilitates cell proliferation and blocks senescence by regulation of tumor suppressor genes and that this might contribute to the oncogenic capacity of PRMT6.


Subject(s)
Cell Proliferation , Cellular Senescence/genetics , Gene Expression Regulation , Genes, Tumor Suppressor , Nuclear Proteins/physiology , Protein-Arginine N-Methyltransferases/physiology , Repressor Proteins/physiology , Transcription, Genetic , Cell Line , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Humans , Nuclear Proteins/genetics , Protein-Arginine N-Methyltransferases/genetics , Repressor Proteins/genetics
19.
J Biomol Screen ; 17(1): 18-26, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21965113

ABSTRACT

In the past years, a lot of attention has been given to the identification and characterization of selective and potent inhibitors of chromatin-modifying enzymes to better understand their specific role in transcriptional regulation. As aberrant histone methylation is involved in different pathological processes, the search for methyltransferase and demethylase inhibitors has emerged as a crucial issue in current medicinal chemistry research. High-throughput in vitro assays are important tools for the identification of new methyltransferase or demethylase inhibitors. These usually use oligopeptide substrates derived from histone sequences, although in many cases, they are not good substrates for these enzymes. Here, the authors report about the setup and establishment of in vitro assays that use native core histones as substrates, enabling an assay environment that better resembles native conditions. They have applied these substrates for the known formaldehyde dehydrogenase assay for the histone demethylase LSD1 and have established two new antibody-based assays. For LSD1, a heterogeneous assay format was set up, and a homogeneous assay was used for the characterization of the arginine methyltransferase PRMT1. Validation of the system was achieved with reference inhibitors in each case.


Subject(s)
Drug Evaluation, Preclinical/methods , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Epigenesis, Genetic , High-Throughput Screening Assays/methods , Histones/metabolism , Aldehyde Oxidoreductases/metabolism , Antibodies/metabolism , Dose-Response Relationship, Drug , Histone Demethylases/antagonists & inhibitors , Histone Demethylases/immunology , Histone Demethylases/metabolism , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Protein-Arginine N-Methyltransferases/metabolism , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/metabolism , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...