Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Commun ; 12(1): 3482, 2021 06 09.
Article in English | MEDLINE | ID: mdl-34108488

ABSTRACT

Hyperplastic expansion of white adipose tissue (WAT) relies in part on the proliferation of adipocyte precursor cells residing in the stromal vascular cell fraction (SVF) of WAT. This study reveals a circadian clock- and feeding-induced diurnal pattern of cell proliferation in the SVF of visceral and subcutaneous WAT in vivo, with higher proliferation of visceral adipocyte progenitor cells subsequent to feeding in lean mice. Fasting or loss of rhythmic feeding eliminates this diurnal proliferation, while high fat feeding or genetic disruption of the molecular circadian clock modifies the temporal expression of proliferation genes and impinges on diurnal SVF proliferation in eWAT. Surprisingly, high fat diet reversal, sufficient to reverse elevated SVF proliferation in eWAT, was insufficient in restoring diurnal patterns of SVF proliferation, suggesting that high fat diet induces a sustained disruption of the adipose circadian clock. In conclusion, the circadian clock and feeding simultaneously impart dynamic, regulatory control of adipocyte progenitor proliferation, which may be a critical determinant of adipose tissue expansion and health over time.


Subject(s)
Adipose Tissue, White/cytology , Cell Proliferation , Circadian Rhythm/physiology , Adipocytes/cytology , Animals , Cell Proliferation/genetics , Circadian Clocks/genetics , Circadian Clocks/physiology , Circadian Rhythm/genetics , Diet, High-Fat , Epididymis/cytology , Fasting , Humans , Male , Mice , Stromal Cells/cytology , Subcutaneous Fat/cytology , Subcutaneous Fat/physiology
3.
J Mol Cell Cardiol ; 158: 115-127, 2021 09.
Article in English | MEDLINE | ID: mdl-34081952

ABSTRACT

RATIONALE: The nutrient sensing mechanistic target of rapamycin complex 1 (mTORC1) and its primary inhibitor, tuberin (TSC2), are cues for the development of cardiac hypertrophy. The phenotype of mTORC1 induced hypertrophy is unknown. OBJECTIVE: To examine the impact of sustained mTORC1 activation on metabolism, function, and structure of the adult heart. METHODS AND RESULTS: We developed a mouse model of inducible, cardiac-specific sustained mTORC1 activation (mTORC1iSA) through deletion of Tsc2. Prior to hypertrophy, rates of glucose uptake and oxidation, as well as protein and enzymatic activity of glucose 6-phosphate isomerase (GPI) were decreased, while intracellular levels of glucose 6-phosphate (G6P) were increased. Subsequently, hypertrophy developed. Transcript levels of the fetal gene program and pathways of exercise-induced hypertrophy increased, while hypertrophy did not progress to heart failure. We therefore examined the hearts of wild-type mice subjected to voluntary physical activity and observed early changes in GPI, followed by hypertrophy. Rapamycin prevented these changes in both models. CONCLUSION: Activation of mTORC1 in the adult heart triggers the development of a non-specific form of hypertrophy which is preceded by changes in cardiac glucose metabolism.


Subject(s)
Cardiomegaly/metabolism , Gene Knockdown Techniques/methods , Glucose/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Signal Transduction/genetics , Animals , Cardiomegaly/diet therapy , Cardiomegaly/genetics , Cardiomegaly/prevention & control , Cells, Cultured , Diet/methods , Disease Models, Animal , Enzyme Activation/genetics , Glucose-6-Phosphatase/metabolism , Isomerases/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myocytes, Cardiac/metabolism , Oxidation-Reduction , Phosphorylation/genetics , Sirolimus/administration & dosage , Tuberous Sclerosis Complex 2 Protein/genetics , Tuberous Sclerosis Complex 2 Protein/metabolism
4.
Cancer Res ; 79(22): 5860-5873, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31575546

ABSTRACT

The incidence of hepatocellular carcinoma (HCC) is on the rise worldwide. Although the incidence of HCC in males is considerably higher than in females, the projected rates of HCC incidence are increasing for both sexes. A recently appreciated risk factor for HCC is the growing problem of nonalcoholic fatty liver disease, which is usually associated with obesity and the metabolic syndrome. In this study, we showed that under conditions of fatty liver, female mice were more likely to develop HCC than expected from previous models. Using an inducible knockout model of the tumor-suppressive isoform of hepatocyte nuclear factor 4 alpha ("P1-HNF4α") in the liver in combination with prolonged high fat (HF) diet, we found that HCC developed equally in male and female mice as early as 38 weeks of age. Similar sex-independent HCC occurred in the "STAM" model of mice, in which severe hyperglycemia and HF feeding results in rapid hepatic lipid deposition, fibrosis, and ultimately HCC. In both sexes, reduced P1-HNF4α activity, which also occurs under chronic HF diet feeding, increased hepatic lipid deposition and produced a greatly augmented circadian rhythm in IL6, a factor previously linked with higher HCC incidence in males. Loss of HNF4α combined with HF feeding induced epithelial-mesenchymal transition in an IL6-dependent manner. Collectively, these data provide a mechanism-based working hypothesis that could explain the rising incidence of aggressive HCC. SIGNIFICANCE: This study provides a mechanism for the growing incidence of hepatocellular carcinoma in both men and women, which is linked to nonalcoholic fatty liver disease.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Hepatocyte Nuclear Factor 4/metabolism , Liver Neoplasms/metabolism , Animals , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Diet, High-Fat/adverse effects , Epithelial-Mesenchymal Transition/physiology , Female , Interleukin-6/metabolism , Liver/metabolism , Liver/pathology , Liver Neoplasms/pathology , Male , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology
5.
Int J Obes (Lond) ; 43(3): 567-580, 2019 03.
Article in English | MEDLINE | ID: mdl-29795456

ABSTRACT

OBJECTIVE: Nutrient challenge in the form of a high fat (HF) diet causes a reversible reprogramming of the hepatic circadian clock. This depends in part on changes in the recruitment of the circadian transcription factor BMAL1 to genome targets, though the causes and extent of disruption to hepatic and extra-hepatic BMAL1 are unknown. The objective of the study was to determine whether HF diet-induced alterations in BMAL1 function occur across insulin-resistant tissues and whether this could be reversed by restoring whole body insulin sensitivity. METHODS: BMAL1 subcellular localization and target recruitment was analyzed in several metabolically active peripheral tissues, including liver, muscle, and adipose tissue under conditions of diet-induced obesity. Animals made obese with HF diet were subsequently treated with rosiglitazone to determine whether resensitizing insulin-resistant tissues to insulin restored hepatic and extra-hepatic BMAL1 function. RESULTS: These data reveal that both hepatic and extra-hepatic BMAL1 activity are altered under conditions of obesity and insulin resistance. Restoring whole body insulin sensitivity by treatment with the antidiabetic drug rosiglitazone is sufficient to restore changes in HF diet-induced BMAL1 recruitment and activity in several tissues. CONCLUSIONS: This study reveals that a key mechanism by which HF diet interferes with clock function in peripheral tissues is via the development of insulin resistance.


Subject(s)
ARNTL Transcription Factors/metabolism , Diet, High-Fat , Hypoglycemic Agents/pharmacology , Rosiglitazone/pharmacology , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Animals , Blood Glucose/drug effects , Insulin/blood , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism
6.
Nat Commun ; 9(1): 4349, 2018 10 19.
Article in English | MEDLINE | ID: mdl-30341289

ABSTRACT

Hepatocyte nuclear factor 4 alpha (HNF4α) is a master regulator of liver-specific gene expression with potent tumor suppressor activity, yet many liver tumors express HNF4α. This study reveals that P1-HNF4α, the predominant isoform expressed in the adult liver, inhibits expression of tumor promoting genes in a circadian manner. In contrast, an additional isoform of HNF4α, driven by an alternative promoter (P2-HNF4α), is induced in HNF4α-positive human hepatocellular carcinoma (HCC). P2-HNF4α represses the circadian clock gene ARNTL (BMAL1), which is robustly expressed in healthy hepatocytes, and causes nuclear to cytoplasmic re-localization of P1-HNF4α. We reveal mechanisms underlying the incompatibility of BMAL1 and P2-HNF4α in HCC, and demonstrate that forced expression of BMAL1 in HNF4α-positive HCC prevents the growth of tumors in vivo. These data suggest that manipulation of the circadian clock in HNF4α-positive HCC could be a tractable strategy to inhibit tumor growth and progression in the liver.


Subject(s)
ARNTL Transcription Factors/metabolism , Carcinoma, Hepatocellular/metabolism , Hepatocyte Nuclear Factor 4/physiology , Liver Neoplasms/metabolism , ARNTL Transcription Factors/genetics , Active Transport, Cell Nucleus , Carcinoma, Hepatocellular/pathology , Circadian Clocks , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Hepatocyte Nuclear Factor 4/genetics , Hepatocyte Nuclear Factor 4/metabolism , Hepatocytes/metabolism , Liver Neoplasms/pathology , Protein Isoforms/physiology
SELECTION OF CITATIONS
SEARCH DETAIL