Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38352319

ABSTRACT

Nociceptors with somata in dorsal root ganglia (DRGs) exhibit an unusual readiness to switch from an electrically silent state to a hyperactive state of tonic, nonaccommodating, low-frequency, irregular discharge of action potentials (APs). Ongoing activity (OA) during this state is present in vivo in rats months after spinal cord injury (SCI), and has been causally linked to SCI pain. OA induced by various neuropathic conditions in rats, mice, and humans is retained in nociceptor somata after dissociation and culturing, providing a powerful tool for investigating its mechanisms and functions. An important question is whether similar nociceptor OA is induced by painful conditions other than neuropathy. The present study shows that probable nociceptors dissociated from DRGs of rats subjected to postsurgical pain (induced by plantar incision) exhibit OA. The OA was most apparent when the soma was artificially depolarized to a level within the normal range of membrane potentials where large, transient depolarizing spontaneous fluctuations (DSFs) can approach AP threshold. This latent hyperactivity persisted for at least 3 weeks, whereas behavioral indicators of affective pain - hindpaw guarding and increased avoidance of a noxious substrate in an operant conflict test - persisted for 1 week or less. An unexpected discovery was latent OA in neurons from thoracic DRGs that innervate dermatomes distant from the injured tissue. The most consistent electrophysiological alteration associated with OA was enhancement of DSFs. Potential in vivo functions of widespread, low-frequency nociceptor OA consistent with these and other findings are to amplify hyperalgesic priming and to drive anxiety-related hypervigilance.

2.
Pain ; 165(4): 893-907, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37862056

ABSTRACT

ABSTRACT: Nociceptor cell bodies generate "spontaneous" discharge that can promote ongoing pain in persistent pain conditions. Little is known about the underlying mechanisms. Recordings from nociceptor cell bodies (somata) dissociated from rodent and human dorsal root ganglia have shown that previous pain in vivo is associated with low-frequency discharge controlled by irregular depolarizing spontaneous fluctuations of membrane potential (DSFs), likely produced by transient inward currents across the somal input resistance. Using mouse nociceptors, we show that DSFs are associated with high somal input resistance over a wide range of membrane potentials, including depolarized levels where DSFs approach action potential (AP) threshold. Input resistance and both the amplitude and frequency of DSFs were increased in neurons exhibiting spontaneous activity. Ion substitution experiments indicated that the depolarizing phase of DSFs is generated by spontaneous opening of channels permeable to Na + or Ca 2+ and that Ca 2+ -permeable channels are especially important for larger DSFs. Partial reduction of the amplitude or frequency of DSFs by perfusion of pharmacological inhibitors indicated small but significant contributions from Nav1.7, Nav1.8, TRPV1, TRPA1, TRPM4, and N-type Ca 2+ channels. Less specific blockers suggested a contribution from NALCN channels, and global knockout suggested a role for Nav1.9. The combination of high somal input resistance plus background activity of diverse ion channels permeable to Na + or Ca 2+ produces DSFs that are poised to reach AP threshold if resting membrane potential depolarizes, AP threshold decreases, or DSFs become enhanced-all of which can occur under painful neuropathic and inflammatory conditions.


Subject(s)
Nociceptors , TRPM Cation Channels , Rats , Mice , Animals , Humans , Rats, Sprague-Dawley , Cell Body , Pain/metabolism , Action Potentials/physiology , Ion Channels/metabolism , Ganglia, Spinal/metabolism , TRPM Cation Channels/metabolism
3.
J Neurosci ; 2022 May 23.
Article in English | MEDLINE | ID: mdl-35610050

ABSTRACT

Neuropathic pain is a major, inadequately treated challenge for people with spinal cord injury (SCI). While SCI pain mechanisms are often assumed to be in the central nervous system, rodent studies have revealed mechanistic contributions from primary nociceptors. These neurons become chronically hyperexcitable after SCI, generating ongoing electrical activity (OA) that promotes ongoing pain. A major question is whether extrinsic chemical signals help to drive OA after SCI. People living with SCI exhibit acute and chronic elevation of circulating levels of macrophage migration inhibitory factor (MIF), a cytokine implicated in preclinical pain models. Probable nociceptors isolated from male rats and exposed to a MIF concentration reported in human plasma (1 ng/ml) showed hyperactivity similar to that induced by SCI, although, surprisingly, a ten-fold higher concentration failed to increase excitability. Conditioned behavioral aversion to a chamber associated with peripheral MIF injection suggested that MIF stimulates affective pain. A MIF inhibitor, Iso-1, reversed SCI-induced hyperexcitability. Unlike after SCI, acute MIF-induced hyperexcitability was only partially abrogated by inhibiting ERK signaling. Unexpectedly, MIF concentrations that induced hyperactivity in nociceptors from Naïve animals, after SCI induced a long-lasting conversion from a highly excitable nonaccommodating type to a rapidly accommodating, hypoexcitable type, possibly as a homeostatic response to prolonged depolarization. Treatment with conditioned medium from cultures of dorsal root ganglion (DRG) cells obtained after SCI was sufficient to induce MIF-dependent hyperactivity in neurons from Naïve rats. Thus, changes in systemic and DRG levels of MIF may help to maintain SCI-induced nociceptor hyperactivity that persistently promotes pain.Significance Statement:Chronic neuropathic pain is a major challenge for people with spinal cord injury (SCI). Pain can drastically impair quality of life, and produces substantial economic and social burdens. Available treatments, including opioids, remain inadequate. This study shows that the cytokine macrophage migration inhibitory factor (MIF) can induce pain-like behavior and plays an important role in driving persistent ongoing electrical activity in injury-detecting sensory neurons (nociceptors) in a rat SCI model. The results indicate that SCI produces an increase in MIF release within sensory ganglia. Low MIF levels potently excite nociceptors, but higher levels trigger a long-lasting hypoexcitable state. These findings suggest that therapeutic targeting of MIF in neuropathic pain states may reduce pain and sensory dysfunction by curbing nociceptor hyperactivity.

4.
Neuropharmacology ; 184: 108408, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33220305

ABSTRACT

Ongoing activity in nociceptors, a driver of spontaneous pain, can be generated in dorsal root ganglion neurons in the absence of sensory generator potentials if one or more of three neurophysiological alterations occur - prolonged depolarization of resting membrane potential (RMP), hyperpolarization of action potential (AP) threshold, and/or increased amplitude of depolarizing spontaneous fluctuations of membrane potential (DSFs) to bridge the gap between RMP and AP threshold. Previous work showed that acute, sustained exposure to serotonin (5-HT) hyperpolarized AP threshold and potentiated DSFs, leading to ongoing activity if a separate source of maintained depolarization was present. Cellular signaling pathways that increase DSF amplitude and promote ongoing activity acutely in nociceptors are not known for any neuromodulator. Here, isolated DRG neurons from male rats were used to define the pathway by which low concentrations of 5-HT enhance DSFs, hyperpolarize AP threshold, and promote ongoing activity. A selective 5-HT4 receptor antagonist blocked these 5-HT-induced hyperexcitable effects, while a selective 5-HT4 agonist mimicked the effects of 5-HT. Inhibition of cAMP effectors, protein kinase A (PKA) and exchange protein activated by cAMP (EPAC), attenuated 5-HT's hyperexcitable effects, but a blocker of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels had no significant effect. 5-HT4-dependent PKA activation was specific to DRG neurons that bind isolectin B4 (a nonpeptidergic nociceptor marker). 5-HT's effects on AP threshold, DSFs, and ongoing activity were mimicked by a cAMP analog. Sustained exposure to 5-HT promotes ongoing activity in nonpeptidergic nociceptors through the Gs-coupled 5-HT4 receptor and downstream cAMP signaling involving both PKA and EPAC.


Subject(s)
Cyclic AMP/metabolism , Ganglia, Spinal/metabolism , Neurons/metabolism , Receptors, Serotonin, 5-HT4/metabolism , Serotonin 5-HT4 Receptor Agonists/metabolism , Serotonin/metabolism , Action Potentials/drug effects , Action Potentials/physiology , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Ganglia, Spinal/drug effects , Male , Neurons/drug effects , Rats , Rats, Sprague-Dawley , Serotonin/pharmacology , Serotonin 5-HT4 Receptor Agonists/pharmacology
5.
J Neurosci ; 40(34): 6522-6535, 2020 08 19.
Article in English | MEDLINE | ID: mdl-32690613

ABSTRACT

Chronic pain caused by spinal cord injury (SCI) is notoriously resistant to treatment, particularly by opioids. After SCI, DRG neurons show hyperactivity and chronic depolarization of resting membrane potential (RMP) that is maintained by cAMP signaling through PKA and EPAC. Importantly, SCI also reduces the negative regulation by Gαi of adenylyl cyclase and its production of cAMP, independent of alterations in G protein-coupled receptors and/or G proteins. Opioid reduction of pain depends on coupling of opioid receptors to Gαi/o family members. Combining high-content imaging and cluster analysis, we show that in male rats SCI decreases opioid responsiveness in vitro within a specific subset of small-diameter nociceptors that bind isolectin B4. This SCI effect is mimicked in nociceptors from naive animals by a modest 5 min depolarization of RMP (15 mm K+; -45 mV), reducing inhibition of cAMP signaling by µ-opioid receptor agonists DAMGO and morphine. Disinhibition and activation of C-Raf by depolarization-dependent phosphorylation are central to these effects. Expression of an activated C-Raf reduces sensitivity of adenylyl cyclase to opioids in nonexcitable HEK293 cells, whereas inhibition of C-Raf or treatment with the hyperpolarizing drug retigabine restores opioid responsiveness and blocks spontaneous activity of nociceptors after SCI. Inhibition of ERK downstream of C-Raf also blocks SCI-induced hyperexcitability and depolarization, without direct effects on opioid responsiveness. Thus, depolarization-dependent C-Raf and downstream ERK activity maintain a depolarized RMP and nociceptor hyperactivity after SCI, providing a self-reinforcing mechanism to persistently promote nociceptor hyperexcitability and limit the therapeutic effectiveness of opioids.SIGNIFICANCE STATEMENT Chronic pain induced by spinal cord injury (SCI) is often permanent and debilitating, and usually refractory to treatment with analgesics, including opioids. SCI-induced pain in a rat model has been shown to depend on persistent hyperactivity in primary nociceptors (injury-detecting sensory neurons), associated with a decrease in the sensitivity of adenylyl cyclase production of cAMP to inhibitory Gαi proteins in DRGs. This study shows that SCI and one consequence of SCI (chronic depolarization of resting membrane potential) decrease sensitivity to opioid-mediated inhibition of cAMP and promote hyperactivity of nociceptors by enhancing C-Raf activity. ERK activation downstream of C-Raf is necessary for maintaining ongoing depolarization and hyperactivity, demonstrating an unexpected positive feedback loop to persistently promote pain.


Subject(s)
Chronic Pain/physiopathology , Nociceptors/physiology , Proto-Oncogene Proteins c-raf/physiology , Receptors, Opioid, mu/physiology , Signal Transduction , Spinal Cord Injuries/physiopathology , Animals , Cells, Cultured , Chronic Pain/complications , Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/administration & dosage , Ganglia, Spinal/drug effects , Ganglia, Spinal/physiopathology , HEK293 Cells , Humans , Male , Membrane Potentials , Rats, Sprague-Dawley , Receptors, Opioid, mu/agonists , Spinal Cord Injuries/complications
6.
Pain ; 161(10): 2344-2352, 2020 10.
Article in English | MEDLINE | ID: mdl-32427749

ABSTRACT

Understanding the mechanisms that drive transition from acute to chronic pain is essential to identify new therapeutic targets. The importance of endogenous resolution pathways acting as a "brake" to prevent development of chronic pain has been largely ignored. We examined the role of interleukin-10 (IL-10) in resolution of neuropathic pain induced by cisplatin. In search of an underlying mechanism, we studied the effect of cisplatin and IL-10 on spontaneous activity (SA) in dorsal root ganglia neurons. Cisplatin (2 mg/kg daily for 3 days) induced mechanical hypersensitivity that resolved within 3 weeks. In both sexes, resolution of mechanical hypersensitivity was delayed in Il10 mice, in WT mice treated intrathecally with neutralizing anti-IL-10 antibody, and in mice with cell-targeted deletion of IL-10R1 on advillin-positive sensory neurons. Electrophysiologically, small- to medium-sized dorsal root ganglia neurons from cisplatin-treated mice displayed an increase in the incidence of SA. Cisplatin treatment also depolarized the resting membrane potential, and decreased action potential voltage threshold and rheobase, while increasing ongoing activity at -45 mV and the amplitude of depolarizing spontaneous fluctuations. In vitro addition of IL-10 (10 ng/mL) reversed the effect of cisplatin on SA and on the depolarizing spontaneous fluctuation amplitudes, but unexpectedly had little effect on the other electrophysiological parameters affected by cisplatin. Collectively, our findings challenge the prevailing concept that IL-10 resolves pain solely by dampening neuroinflammation and demonstrate in a model of chemotherapy-induced neuropathic pain that endogenous IL-10 prevents transition to chronic pain by binding to IL-10 receptors on sensory neurons to regulate their activity.


Subject(s)
Hyperalgesia/metabolism , Action Potentials , Animals , Cisplatin/toxicity , Female , Ganglia, Spinal , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Interleukin-10 , Male , Mice , Sensory Receptor Cells
7.
FASEB J ; 34(6): 7483-7499, 2020 06.
Article in English | MEDLINE | ID: mdl-32277850

ABSTRACT

Recent studies have revealed gender differences in cold perception, and pointed to a possible direct action of testosterone (TST) on the cold-activated TRPM8 (Transient Receptor Potential Melastatin Member 8) channel. However, the mechanisms by which TST influences TRPM8-mediated sensory functions remain elusive. Here, we show that TST inhibits TRPM8-mediated mild-cold perception through the noncanonical engagement of the Androgen Receptor (AR). Castration of both male rats and mice increases sensitivity to mild cold, and this effect depends on the presence of intact TRPM8 and AR. TST in nanomolar concentrations suppresses whole-cell TRPM8-mediated currents and single-channel activity in native dorsal root ganglion (DRG) neurons and HEK293 cells co-expressing recombinant TRPM8 and AR, but not TRPM8 alone. AR cloned from rat DRGs shows no difference from standard AR. However, biochemical assays and confocal imaging reveal the presence of AR on the cell surface and its interaction with TRPM8 in response to TST, leading to an inhibition of channel activity.


Subject(s)
Receptors, Androgen/metabolism , TRPM Cation Channels/metabolism , Testosterone/metabolism , Androgens/metabolism , Animals , Cell Line , Cold Temperature , Female , Ganglia, Spinal/metabolism , HEK293 Cells , Humans , Male , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Neurons/metabolism , Rats , Rats, Wistar
8.
Neurobiol Pain ; 7: 100040, 2020.
Article in English | MEDLINE | ID: mdl-31890991

ABSTRACT

Chronic pain following spinal cord injury (SCI) is associated with electrical hyperactivity (spontaneous and evoked) in primary nociceptors. Cyclic adenosine monophosphate (cAMP) signaling is an important contributor to nociceptor excitability, and knockdown of the cAMP effector, exchange protein activated by cAMP (EPAC), has been shown to relieve pain-like responses in several chronic pain models. To examine potentially distinct roles of each EPAC isoform (EPAC1 and 2) in maintaining chronic pain, we used rat and mouse models of contusive spinal cord injury (SCI). Pharmacological inhibition of EPAC1 or 2 in a rat SCI model was sufficient to reverse SCI-induced nociceptor hyperactivity, indicating that EPAC1 and 2 signaling activity are complementary, with both required to maintain hyperactivity. However, EPAC activation was not sufficient to induce similar hyperactivity in nociceptors from naïve rats, and we observed no change in EPAC protein expression after SCI. In the mouse SCI model, inhibition of both EPAC isoforms through a combination of pharmacological inhibition and genetic deletion was required to reverse SCI-induced nociceptor hyperactivity. This was consistent with our finding that neither EPAC1-/- nor EPAC2-/- mice were protected against SCI-induced chronic pain as assessed with an operant mechanical conflict test. Thus, EPAC1 and 2 activity may play a redundant role in mouse nociceptors, although no corresponding change in EPAC protein expression levels was detected after SCI. Despite some differences between these species, our data demonstrate a fundamental role for both EPAC1 and EPAC2 in mechanisms maintaining nociceptor hyperactivity and chronic pain after SCI.

9.
Pain ; 159(11): 2347-2362, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30015712

ABSTRACT

Ongoing pain has been linked to ongoing activity (OA) in human C-fiber nociceptors, but rodent models of pain-related OA have concentrated on allodynia rather than ongoing pain, and on OA generated in non-nociceptive Aß fibers rather than C-fiber nociceptors. Little is known about how ongoing pain or nociceptor OA is generated. To define neurophysiological alterations underlying nociceptor OA, we have used isolated dorsal root ganglion neurons that continue to generate OA after removal from animals displaying ongoing pain. We subclassify OA as either spontaneous activity generated solely by alterations intrinsic to the active neuron or as extrinsically driven OA. Both types of OA were implicated previously in nociceptors in vivo and after isolation following spinal cord injury, which produces chronic ongoing pain. Using novel automated algorithms to analyze irregular changes in membrane potential, we have found, in a distinctive, nonaccommodating type of probable nociceptor, induction by spinal cord injury of 3 alterations that promote OA: (1) prolonged depolarization of resting membrane potential, (2) a hyperpolarizing shift in the voltage threshold for action potential generation, and (3) an increase in the incidence of large depolarizing spontaneous fluctuations (DSFs). Can DSFs also be enhanced acutely to promote OA in neurons from uninjured animals? A low dose of serotonin failed to change resting membrane potential but lowered action potential threshold. When combined with artificial depolarization to model inflammation, serotonin also strongly potentiated DSFs and OA. These findings reveal nociceptor specializations for generating OA that may promote ongoing pain in chronic and acute conditions.


Subject(s)
Action Potentials/physiology , Nociceptors/metabolism , Pain/metabolism , Sensory Receptor Cells/physiology , Action Potentials/drug effects , Animals , Cells, Cultured , Disease Models, Animal , Ganglia, Spinal/cytology , Male , Pain/etiology , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley , Sensory Receptor Cells/drug effects , Serotonin/pharmacology , Spinal Cord Injuries/complications
10.
J Neurosci ; 38(2): 474-483, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29192128

ABSTRACT

Zinc is a transition metal that has a long history of use as an anti-inflammatory agent. It also soothes pain sensations in a number of animal models. However, the effects and mechanisms of zinc on chemotherapy-induced peripheral neuropathy remain unknown. Here we show that locally injected zinc markedly reduces neuropathic pain in male and female mice induced by paclitaxel, a chemotherapy drug, in a TRPV1-dependent manner. Extracellularly applied zinc also inhibits the function of TRPV1 expressed in HEK293 cells and mouse DRG neurons, which requires the presence of zinc-permeable TRPA1 to mediate entry of zinc into the cytoplasm. Moreover, TRPA1 is required for zinc-induced inhibition of TRPV1-mediated acute nociception. Unexpectedly, zinc transporters, but not TRPA1, are required for zinc-induced inhibition of TRPV1-dependent chronic neuropathic pain produced by paclitaxel. Together, our study demonstrates a novel mechanism underlying the analgesic effect of zinc on paclitaxel-induced neuropathic pain that relies on the function of TRPV1.SIGNIFICANCE STATEMENT The chemotherapy-induced peripheral neuropathy is a major limiting factor affecting the chemotherapy patients. There is no effective treatment available currently. We demonstrate that zinc prevents paclitaxel-induced mechanical hypersensitivity via inhibiting the TRPV1 channel, which is involved in the sensitization of peripheral nociceptors in chemotherapy. Zinc transporters in DRG neurons are required for the entry of zinc into the intracellular side, where it inhibits TRPV1. Our study provides insight into the mechanism underlying the pain-soothing effect of zinc and suggests that zinc could be developed to therapeutics for the treatment of chemotherapy-induced peripheral neuropathy.


Subject(s)
Antineoplastic Agents, Phytogenic/toxicity , Neuralgia/metabolism , Paclitaxel/toxicity , TRPV Cation Channels/antagonists & inhibitors , Zinc Acetate/pharmacology , Animals , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuralgia/chemically induced , TRPV Cation Channels/drug effects
11.
Adv Exp Med Biol ; 993: 239-255, 2017.
Article in English | MEDLINE | ID: mdl-28900918

ABSTRACT

Transient receptor potential canonical (TRPC) proteins were identified as molecular candidates of receptor- and/or store-operated channels because of their close homology to the Drosophila TRP and TRPL. Functional studies have revealed that TRPC channels play an integrated part of phospholipase C-transduced cell signaling, mediating the influx of both Ca2+ and Na+ into cells. As a consequence, the TRPC channels have diverse functional roles in different cell types, including metabotropic receptor-evoked membrane depolarization and intracellular Ca2+ concentration elevation. Depending on the cellular environment and the protein partners present in the channel complex, the TRPC channels display different biophysical properties and mechanisms of regulation, including but not limited to the Ca2+ filling state of the endoplasmic reticulum. Despite the overwhelming focus on STIM-regulated Orai channels for store-operated Ca2+ entry, evidence is growing for STIM-operated TRPC channel activities in various cell types, demonstrating both store-dependent and store-independent mechanisms of TRPC channel gating. The existence of physical and functional interactions between plasma membrane-localized TRPC channels and other proteins involved in sensing and regulating the intracellular Ca2+ store contents, such as inositol trisphosphate receptors, Junctate, and Homer, further argues for the role of TRPC proteins in linking plasma membrane ion transport with intracellular Ca2+ stores. The interplay among these proteins will likely define the functional significance of TRPC channel activation in different cellular contexts and under different modes of stimulations.


Subject(s)
Calcium Channels/metabolism , Calcium Signaling/physiology , Calcium/metabolism , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Ion Transport/physiology , TRPC Cation Channels/metabolism , Animals , Humans
12.
J Neurosci ; 36(5): 1660-8, 2016 Feb 03.
Article in English | MEDLINE | ID: mdl-26843647

ABSTRACT

Little is known about intracellular signaling mechanisms that persistently excite neurons in pain pathways. Persistent spontaneous activity (SA) generated in the cell bodies of primary nociceptors within dorsal root ganglia (DRG) has been found to make major contributions to chronic pain in a rat model of spinal cord injury (SCI) (Bedi et al., 2010; Yang et al., 2014). The occurrence of SCI-induced SA in a large fraction of DRG neurons and the persistence of this SA long after dissociation of the neurons provide an opportunity to define intrinsic cell signaling mechanisms that chronically drive SA in pain pathways. The present study demonstrates that SCI-induced SA requires continuing activity of adenylyl cyclase (AC) and cAMP-dependent protein kinase (PKA), as well as a scaffolded complex containing AC5/6, A-kinase anchoring protein 150 (AKAP150), and PKA. SCI caused a small but significant increase in the expression of AKAP150 but not other AKAPs. DRG membranes isolated from SCI animals revealed a novel alteration in the regulation of AC. AC activity stimulated by Ca(2+)-calmodulin increased, while the inhibition of AC activity by Gαi showed an unexpected and dramatic decrease after SCI. Localized enhancement of the activity of AC within scaffolded complexes containing PKA is likely to contribute to chronic pathophysiological consequences of SCI, including pain, that are promoted by persistent hyperactivity in DRG neurons. SIGNIFICANCE STATEMENT: Chronic neuropathic pain is a major clinical problem with poorly understood mechanisms and inadequate treatments. Recent findings indicate that chronic pain in a rat SCI model depends upon hyperactivity in dorsal root ganglia (DRG) neurons. Although cAMP signaling is involved in many forms of neural plasticity, including hypersensitivity of nociceptors in the presence of inflammatory mediators, our finding that continuing cAMP-PKA signaling is required for persistent SA months after SCI and long after isolation of nociceptors is surprising. The dependence of ongoing SA upon AKAP150 and AC5/6 was unknown. The discovery of a dramatic decrease in Gαi inhibition of AC activity after SCI is novel for any physiological system and potentially has broad implications for understanding chronic pain mechanisms.


Subject(s)
Action Potentials/physiology , Adenylyl Cyclases/physiology , Cyclic AMP-Dependent Protein Kinases/physiology , Ganglia, Spinal/enzymology , Nociceptors/physiology , Spinal Cord Injuries/enzymology , A Kinase Anchor Proteins/pharmacology , Action Potentials/drug effects , Animals , Cells, Cultured , Ganglia, Spinal/drug effects , Male , Rats , Spinal Cord Injuries/pathology , Tissue Scaffolds
13.
J Biol Chem ; 290(51): 30616-23, 2015 Dec 18.
Article in English | MEDLINE | ID: mdl-26507659

ABSTRACT

Nitric oxide (NO) is involved in a variety of physiological processes, such as vasoregulation and neurotransmission, and has a complex role in the regulation of pain transduction and synaptic transmission. We have shown previously that NO inhibits high voltage-activated Ca(2+) channels in primary sensory neurons and excitatory synaptic transmission in the spinal dorsal horn. However, the molecular mechanism involved in this inhibitory action remains unclear. In this study, we investigated the role of S-nitrosylation in the NO regulation of high voltage-activated Ca(2+) channels. The NO donor S-nitroso-N-acetyl-DL-penicillamine (SNAP) rapidly reduced N-type currents when Cav2.2 was coexpressed with the Cavß1 or Cavß3 subunits in HEK293 cells. In contrast, SNAP only slightly inhibited P/Q-type and L-type currents reconstituted with various Cavß subunits. SNAP caused a depolarizing shift in voltage-dependent N-type channel activation, but it had no effect on Cav2.2 protein levels on the membrane surface. The inhibitory effect of SNAP on N-type currents was blocked by the sulfhydryl-specific modifying reagent methanethiosulfonate ethylammonium. Furthermore, the consensus motifs of S-nitrosylation were much more abundant in Cav2.2 than in Cav1.2 and Cav2.1. Site-directed mutagenesis studies showed that Cys-805, Cys-930, and Cys-1045 in the II-III intracellular loop, Cys-1835 and Cys-2145 in the C terminus of Cav2.2, and Cys-346 in the Cavß3 subunit were nitrosylation sites mediating NO sensitivity of N-type channels. Our findings demonstrate that the consensus motifs of S-nitrosylation in cytoplasmically accessible sites are critically involved in post-translational regulation of N-type Ca(2+) channels by NO. S-Nitrosylation mediates the feedback regulation of N-type channels by NO.


Subject(s)
Calcium Channels, N-Type/metabolism , Nitric Oxide/metabolism , Amino Acid Motifs , Animals , Calcium Channels, N-Type/genetics , HEK293 Cells , Humans , Mutagenesis, Site-Directed , Nitric Oxide/genetics , Rats , S-Nitroso-N-Acetylpenicillamine/pharmacology
14.
Vitam Horm ; 96: 1-18, 2014.
Article in English | MEDLINE | ID: mdl-25189381

ABSTRACT

The potential involvement of nitric oxide (NO), a diffusible gaseous signaling messenger, in nociceptive transduction and transmission has been extensively investigated. However, there is no consistent and convincing evidence supporting the pronociceptive action of NO at the physiological concentration, and the discrepancies are possibly due to the nonspecificity of nitric oxide synthase inhibitors and different concentrations of NO donors used in various studies. At the spinal cord level, NO predominantly reduces synaptic transmission by inhibiting the activity of NMDA receptors and glutamate release from primary afferent terminals through S-nitrosylation of voltage-activated calcium channels. NO also promotes synaptic glycine release from inhibitory interneurons through the cyclic guanosine monophosphate/protein kinase G signaling pathway. Thus, NO probably functions as a negative feedback regulator to reduce nociceptive transmission in the spinal dorsal horn during painful conditions.


Subject(s)
Nitric Oxide/metabolism , Pain/metabolism , Signal Transduction/physiology , Animals , Electrophysiological Phenomena , Gene Expression Regulation , Humans
15.
J Biol Chem ; 288(6): 3929-37, 2013 Feb 08.
Article in English | MEDLINE | ID: mdl-23264624

ABSTRACT

Scaffolding proteins often bring kinases together with their substrates to facilitate cell signaling. This arrangement is critical for the phosphorylation and regulation of the transient receptor potential vanilloid 1 (TRPV1) channel, a key target of inflammatory mediators such as prostaglandins. The protein kinase A anchoring protein AKAP79/150 organizes a multiprotein complex to position protein kinase A (PKA) and protein kinase C (PKC) in the immediate proximity of TRPV1 channels to enhance phosphorylation efficiency. This arrangement suggests that regulators upstream of the kinases must also be present in the signalosome. Here, we show that AKAP79/150 facilitates a complex containing TPRV1 and adenylyl cyclase (AC). The anchoring of AC to this complex generates local pools of cAMP, shifting the concentration of forskolin required to attenuate capsaicin-dependent TRPV1 desensitization by ∼100-fold. Anchoring of AC to the complex also sensitizes the channel to activation by ß-adrenergic receptor agonists. Significant AC activity is found associated with TRPV1 in dorsal root ganglia. The dissociation of AC from an AKAP150-TRPV1 complex in dorsal root ganglia neurons abolishes sensitization of TRPV1 induced by forskolin and prostaglandin E(2). Thus, the direct anchoring of both PKA and AC to TRPV1 by AKAP79/150 facilitates the response to inflammatory mediators and may be critical in the pathogenesis of thermal hyperalgesia.


Subject(s)
A Kinase Anchor Proteins/metabolism , Adenylyl Cyclases/metabolism , Ganglia, Spinal/metabolism , Multiprotein Complexes/metabolism , Nerve Tissue Proteins/metabolism , TRPV Cation Channels/metabolism , A Kinase Anchor Proteins/genetics , Adenylyl Cyclases/genetics , Adrenergic beta-Agonists/pharmacology , Animals , Capsaicin/pharmacology , Colforsin/pharmacology , Cyclic AMP/genetics , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , Dinoprostone/genetics , Dinoprostone/metabolism , Ganglia, Spinal/pathology , HEK293 Cells , Humans , Hyperalgesia/genetics , Hyperalgesia/metabolism , Hyperalgesia/pathology , Mice , Multiprotein Complexes/genetics , Nerve Tissue Proteins/genetics , Protein Kinase C/genetics , Protein Kinase C/metabolism , Sensory System Agents/pharmacology , TRPV Cation Channels/genetics
16.
J Biol Chem ; 286(11): 9849-55, 2011 Mar 18.
Article in English | MEDLINE | ID: mdl-21245133

ABSTRACT

Cold/menthol-activated TRPM8 (transient receptor potential channel melastatin member 8) is primarily expressed in sensory neurons, where it constitutes the principal receptor of environmental innocuous cold. TRPM8 has been shown to be regulated by multiple influences such as phosphorylation, pH, Ca(2+), and lipid messengers. One such messenger is arachidonic acid (AA), which has been shown to inhibit TRPM8 channel activity. However, the physiological pathways mediating the inhibitory effect of AA on TRPM8 still remain unknown. Here, we demonstrate that TRPM8 is regulated via M3 muscarinic acetylcholine receptor-coupled signaling cascade based on the activation of cytosolic phospholipase A2 (cPLA2) and cPLA2-catalyzed derivation of AA. Stimulation of M3 receptors heterologously co-expressed with TRPM8 in HEK-293 cells by nonselective muscarinic agonist, oxotremorine methiodide (Oxo-M), caused inhibition of TRPM8-mediated membrane current, which could be mimicked by AA and antagonized by pharmacological or siRNA-mediated cPLA2 silencing. Our results demonstrate the intracellular functional link between M3 receptor and TRPM8 channel via cPLA2/AA and suggest a novel physiological mechanism of arachidonate-mediated regulation of TRPM8 channel activity through muscarinic receptors. We also summarize the existing TRPM8 regulations and discuss their physiological and pathological significance.


Subject(s)
Arachidonic Acid/metabolism , Group IV Phospholipases A2/metabolism , Receptor, Muscarinic M3/metabolism , TRPM Cation Channels/metabolism , Arachidonic Acid/pharmacology , Gene Silencing , Group IV Phospholipases A2/genetics , HEK293 Cells , Humans , Phosphorylation/drug effects , Receptor, Muscarinic M3/genetics , TRPM Cation Channels/genetics
17.
J Biol Chem ; 285(13): 9410-9419, 2010 Mar 26.
Article in English | MEDLINE | ID: mdl-20110357

ABSTRACT

The transient receptor potential channel melastatin member 8 (TRPM8) is expressed in sensory neurons, where it constitutes the main receptor of environmental innocuous cold (10-25 degrees C). Among several types of G protein-coupled receptors expressed in sensory neurons, G(i)-coupled alpha 2A-adrenoreceptor (alpha 2A-AR), is known to be involved in thermoregulation; however, the underlying molecular mechanisms remain poorly understood. Here we demonstrated that stimulation of alpha 2A-AR inhibited TRPM8 in sensory neurons from rat dorsal root ganglia (DRG). In addition, using specific pharmacological and molecular tools combined with patch-clamp current recordings, we found that in heterologously expressed HEK-293 (human embryonic kidney) cells, TRPM8 channel is inhibited by the G(i) protein/adenylate cyclase (AC)/cAMP/protein kinase A (PKA) signaling cascade. We further identified the TRPM8 S9 and T17 as two key PKA phosphorylation sites regulating TRPM8 channel activity. We therefore propose that inhibition of TRPM8 through the alpha 2A-AR signaling cascade could constitute a new mechanism of modulation of thermosensation in both physiological and pathological conditions.


Subject(s)
Receptors, Adrenergic, alpha-2/metabolism , TRPM Cation Channels/metabolism , Animals , Cell Line , Cyclic AMP-Dependent Protein Kinases/metabolism , Ganglia, Spinal/metabolism , Humans , Models, Biological , Mutagenesis , Neurons/metabolism , Patch-Clamp Techniques , Phosphorylation , Rats , Rats, Wistar , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Temperature
18.
J Biol Chem ; 283(15): 10162-73, 2008 Apr 11.
Article in English | MEDLINE | ID: mdl-18230611

ABSTRACT

Because prostate cancer is, in its early stages, an androgen-dependent pathology, treatments aiming at decreasing testosterone plasma concentration have been developed for many years now. However, a significant proportion of patients suffer a relapse after a few years of hormone therapy. The androgen-independent stage of prostate cancer has been shown to be associated with the development of neuroendocrine differentiation. We previously demonstrated that neuroendocrine prostate cancer cells derived from LNCaP cells overexpress CaV3.2 T-type voltage-dependent calcium channels. We demonstrate here using prostatic acid phosphatase as a marker of prostate secretion and FM1-43 fluorescence imaging of membrane trafficking that neuroendocrine differentiation is associated with an increase in calcium-dependent secretion which critically relies on CaV3.2 T-type calcium channel activity. In addition, we show that these channels are expressed by neuroendocrine cells in prostate cancer tissues obtained from patients after surgery. We propose that CaV3.2 T-type calcium channel up-regulation may account for the alteration of secretion during prostate cancer development and that these channels, by promoting the secretion of potential mitogenic factors, could participate in the progression of the disease toward an androgen-independent stage.


Subject(s)
Biomarkers, Tumor/metabolism , Calcium Channels, T-Type/metabolism , Calcium/metabolism , Carcinoma, Neuroendocrine/metabolism , Growth Substances/metabolism , Prostatic Neoplasms/metabolism , Acid Phosphatase , Androgens/blood , Carcinoma, Neuroendocrine/pathology , Carcinoma, Neuroendocrine/therapy , Cell Differentiation , Cell Line, Tumor , Hormone Replacement Therapy , Humans , Male , Prostatic Neoplasms/pathology , Prostatic Neoplasms/therapy , Protein Tyrosine Phosphatases/metabolism , Testosterone/blood , Up-Regulation
19.
Cell Calcium ; 41(3): 285-94, 2007 Mar.
Article in English | MEDLINE | ID: mdl-16949669

ABSTRACT

One of the best-studied temperature-gated channels is transient receptor potential melastatin 8 (TRPM8), which is activated by cold and cooling agents, such as menthol. Besides inducing a cooling sensation in sensory neurons, TRPM8 channel activation also plays a major role in physiopathology. Indeed, TRPMP8 expression increases in early stages of prostate cancer and its involvement in prostate cell apoptosis has recently been demonstrated. Thus, as TRPM8 is a tumor marker with significant potential use in diagnosis, as well as a target for cancer therapy, there is a need for new TRPM8-specific ligands. In this study, we investigated the action of "WS" compounds on TRPM8 channels. We compared the affinity of these molecules to that of menthol and icilin. This enabled us to identify new TRPM8 agonists. The menthol analog with the highest affinity, WS-12, had an EC(50) value about 2000 times lower than that of menthol and is, therefore, the highest-affinity TRPM8 ligand known to date. Finally, incorporating a fluorine atom in the WS-12 retained 75% of the activity of the parent compound. The high affinity of this new TRPM8 ligand and the possibility of incorporating a radiohalogen could thus be useful for diagnosis, monitoring and, perhaps, even therapy of prostate cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Biomarkers, Tumor/agonists , Prostatic Neoplasms/metabolism , TRPM Cation Channels/agonists , Animals , Antineoplastic Agents/therapeutic use , Antipruritics/pharmacology , Biomarkers, Tumor/biosynthesis , Cell Line, Tumor , Diagnostic Imaging , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Ligands , Male , Menthol/pharmacology , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/therapy , Pyrimidinones/pharmacology , TRPM Cation Channels/biosynthesis
20.
J Biol Chem ; 280(47): 39423-35, 2005 Nov 25.
Article in English | MEDLINE | ID: mdl-16174775

ABSTRACT

Recent cloning of a cold/menthol-sensitive TRPM8 channel (transient receptor potential melastatine family member 8) from rodent sensory neurons has provided the molecular basis for the cold sensation. Surprisingly, the human orthologue of rodent TRPM8 also appears to be strongly expressed in the prostate and in the prostate cancer-derived epithelial cell line, LNCaP. In this study, we show that despite such expression, LNCaP cells respond to cold/menthol stimulus by membrane current (I(cold/menthol)) that shows inward rectification and high Ca(2+) selectivity, which are dramatically different properties from "classical" TRPM8-mediated I(cold/menthol). Yet, silencing of endogenous TRPM8 mRNA by either antisense or siRNA strategies suppresses both I(cold/menthol) and TRPM8 protein in LNCaP cells. We demonstrate that these puzzling results arise from TRPM8 localization not in the plasma, but in the endoplasmic reticulum (ER) membrane of LNCaP cells, where it supports cold/menthol/icilin-induced Ca(2+) release from the ER with concomitant activation of plasma membrane (PM) store-operated channels (SOC). In contrast, GFP-tagged TRPM8 heterologously expressed in HEK-293 cells target the PM. We also demonstrate that TRPM8 expression and the magnitude of SOC current associated with it are androgen-dependent. Our results suggest that the TRPM8 may be an important new ER Ca(2+) release channel, potentially involved in a number of Ca(2+)- and store-dependent processes in prostate cancer epithelial cells, including those that are important for prostate carcinogenesis, such as proliferation and apoptosis.


Subject(s)
Prostatic Neoplasms/metabolism , TRPM Cation Channels/metabolism , Animals , Base Sequence , Calcium Signaling , Cell Line , Cell Line, Tumor , Cold Temperature , DNA, Complementary/genetics , Endoplasmic Reticulum/metabolism , Gene Expression , Gene Silencing , Humans , Male , Membrane Potentials/drug effects , Menthol/pharmacology , Patch-Clamp Techniques , Prostatic Neoplasms/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Neoplasm/genetics , RNA, Neoplasm/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , TRPM Cation Channels/genetics , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...