Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters











Publication year range
1.
Malar J ; 23(1): 227, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090669

ABSTRACT

BACKGROUND: Plasmodium falciparum, the malaria-causing parasite, is a leading cause of infection-induced deaths worldwide. The preferred treatment approach is artemisinin-based combination therapy, which couples fast-acting artemisinin derivatives with longer-acting drugs, such as lumefantrine, mefloquine, and amodiaquine. However, the urgency for new treatments has risen due to the parasite's growing resistance to existing therapies. In this study, a common characteristic of the P. falciparum proteome-stretches of poly-lysine residues, such as those found in proteins related to adhesion and pathogenicity-is investigated for its potential to treat infected erythrocytes. METHODS: This study utilizes in vitro culturing of intra-erythrocytic P. falciparum to assess the ability of poly-lysine peptides to inhibit the parasite's growth, measured via flow cytometry of acridine orange-stained infected erythrocytes. The inhibitory effect of many poly-lysine lengths and modifications were tested this way. Affinity pull-downs and mass spectrometry were performed to identify the proteins interacting with these poly-lysines. RESULTS: A single dose of these poly-basic peptides can successfully diminish parasitemia in human erythrocytes in vitro with minimal toxicity. The effectiveness of the treatment correlates with the length of the poly-lysine peptide, with 30 lysine peptides supporting the eradication of erythrocytic parasites within 72 h. PEG-ylation of the poly-lysine peptides or utilizing poly-lysine dendrimers and polymers retains or increases parasite clearance efficiency and bolsters the stability of these potential new therapeutics. Lastly, affinity pull-downs and mass-spectrometry identify P. falciparum's outer membrane proteins as likely targets for polybasic peptide medications. CONCLUSION: Since poly-lysine dendrimers are already FDA-approved for drug delivery and this study displays their potency against intraerythrocytic P. falciparum, their adaptation as anti-malarial drugs presents a promising new therapeutic strategy for malaria.


Subject(s)
Antimalarials , Erythrocytes , Plasmodium falciparum , Plasmodium falciparum/drug effects , Antimalarials/pharmacology , Antimalarials/chemistry , Erythrocytes/drug effects , Erythrocytes/parasitology , Peptides/pharmacology , Peptides/chemistry , Humans , Polymers/pharmacology , Polymers/chemistry , Polylysine/pharmacology , Polylysine/chemistry
2.
Development ; 151(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38602479

ABSTRACT

Alveologenesis is the final stage of lung development in which the internal surface area of the lung is increased to facilitate efficient gas exchange in the mature organism. The first phase of alveologenesis involves the formation of septal ridges (secondary septae) and the second phase involves thinning of the alveolar septa. Within secondary septa, mesenchymal cells include a transient population of alveolar myofibroblasts (MyoFBs) and a stable but poorly described population of lipid-rich cells that have been referred to as lipofibroblasts or matrix fibroblasts (MatFBs). Using a unique Fgf18CreER lineage trace mouse line, cell sorting, single-cell RNA sequencing and primary cell culture, we have identified multiple subtypes of mesenchymal cells in the neonatal lung, including an immature progenitor cell that gives rise to mature MyoFB. We also show that the endogenous and targeted ROSA26 locus serves as a sensitive reporter for MyoFB maturation. These studies identify a MyoFB differentiation program that is distinct from other mesenchymal cell types and increases the known repertoire of mesenchymal cell types in the neonatal lung.


Subject(s)
Animals, Newborn , Cell Differentiation , Lung , Myofibroblasts , Animals , Myofibroblasts/metabolism , Myofibroblasts/cytology , Mice , Lung/cytology , Lung/embryology , Lung/metabolism , Cell Lineage , Organogenesis , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism
3.
Nature ; 627(8002): 165-173, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38326613

ABSTRACT

The arachnoid barrier delineates the border between the central nervous system and dura mater. Although the arachnoid barrier creates a partition, communication between the central nervous system and the dura mater is crucial for waste clearance and immune surveillance1,2. How the arachnoid barrier balances separation and communication is poorly understood. Here, using transcriptomic data, we developed transgenic mice to examine specific anatomical structures that function as routes across the arachnoid barrier. Bridging veins create discontinuities where they cross the arachnoid barrier, forming structures that we termed arachnoid cuff exit (ACE) points. The openings that ACE points create allow the exchange of fluids and molecules between the subarachnoid space and the dura, enabling the drainage of cerebrospinal fluid and limited entry of molecules from the dura to the subarachnoid space. In healthy human volunteers, magnetic resonance imaging tracers transit along bridging veins in a similar manner to access the subarachnoid space. Notably, in neuroinflammatory conditions such as experimental autoimmune encephalomyelitis, ACE points also enable cellular trafficking, representing a route for immune cells to directly enter the subarachnoid space from the dura mater. Collectively, our results indicate that ACE points are a critical part of the anatomy of neuroimmune communication in both mice and humans that link the central nervous system with the dura and its immunological diversity and waste clearance systems.


Subject(s)
Arachnoid , Brain , Dura Mater , Animals , Humans , Mice , Arachnoid/anatomy & histology , Arachnoid/blood supply , Arachnoid/immunology , Arachnoid/metabolism , Biological Transport , Brain/anatomy & histology , Brain/blood supply , Brain/immunology , Brain/metabolism , Dura Mater/anatomy & histology , Dura Mater/blood supply , Dura Mater/immunology , Dura Mater/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Gene Expression Profiling , Magnetic Resonance Imaging , Mice, Transgenic , Subarachnoid Space/anatomy & histology , Subarachnoid Space/blood supply , Subarachnoid Space/immunology , Subarachnoid Space/metabolism , Cerebrospinal Fluid/metabolism , Veins/metabolism
4.
bioRxiv ; 2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37745508

ABSTRACT

Plasmodium falciparum, the malaria-causing parasite, is a leading cause of infection-induced deaths worldwide. The preferred treatment approach is artemisinin-combination therapy, which couples fast-acting artemisinin derivatives with longer-acting drugs like lumefantrine, mefloquine, and amodiaquine. However, the urgency for new treatments has risen due to the parasite's growing resistance to existing therapies. Our study shows that a common characteristic of the P. falciparum proteome - stretches of poly-lysine residues such as those found in proteins related to adhesion and pathogenicity - can serve as an effective peptide treatment for infected erythrocytes. A single dose of these poly-basic peptides can successfully diminish parasitemia in human erythrocytes in vitro with minimal toxicity. The effectiveness of the treatment correlates with the length of the poly-lysine peptide, with 30 lysine peptides supporting the eradication of erythrocytic parasites within 72 hours. PEG-ylation of the poly-lysine peptides or utilizing poly-lysine dendrimers and polymers further increases parasite clearance efficiency and bolsters the stability of these potential new therapeutics. Lastly, our affinity pull-downs and mass-spectrometry identify P. falciparum's outer membrane proteins as likely targets for polybasic peptide medications. Since poly-lysine dendrimers are already FDA-approved for drug delivery, their adaptation as antimalarial drugs presents a promising new therapeutic strategy.

5.
Nat Commun ; 14(1): 453, 2023 01 27.
Article in English | MEDLINE | ID: mdl-36707519

ABSTRACT

Cerebrospinal fluid (CSF) is essential for the development and function of the central nervous system (CNS). However, the brain and its interstitium have largely been thought of as a single entity through which CSF circulates, and it is not known whether specific cell populations within the CNS preferentially interact with the CSF. Here, we develop a technique for CSF tracking, gold nanoparticle-enhanced X-ray microtomography, to achieve micrometer-scale resolution visualization of CSF circulation patterns during development. Using this method and subsequent histological analysis in rodents, we identify previously uncharacterized CSF pathways from the subarachnoid space (particularly the basal cisterns) that mediate CSF-parenchymal interactions involving 24 functional-anatomic cell groupings in the brain and spinal cord. CSF distribution to these areas is largely restricted to early development and is altered in posthemorrhagic hydrocephalus. Our study also presents particle size-dependent CSF circulation patterns through the CNS including interaction between neurons and small CSF tracers, but not large CSF tracers. These findings have implications for understanding the biological basis of normal brain development and the pathogenesis of a broad range of disease states, including hydrocephalus.


Subject(s)
Hydrocephalus , Metal Nanoparticles , Animals , Gold/metabolism , Rodentia , X-Ray Microtomography , Brain/metabolism , Cerebrospinal Fluid/metabolism
6.
bioRxiv ; 2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38234814

ABSTRACT

Alveologenesis is the final stage of lung development in which the internal surface area of the lung is increased to facilitate efficient gas exchange in the mature organism. The first phase of alveologenesis involves the formation of septal ridges (secondary septae) and the second phase involves thinning of the alveolar septa. Within secondary septa, mesenchymal cells include a transient population of alveolar myofibroblasts (MyoFB) and a stable but poorly described population of lipid rich cells that have been referred to as lipofibroblasts or matrix fibroblasts (MatFB). Using a unique Fgf18CreER lineage trace mouse line, cell sorting, single cell RNA sequencing, and primary cell culture, we have identified multiple subtypes of mesenchymal cells in the neonatal lung, including an immature progenitor cell that gives rise to mature MyoFB. We also show that the endogenous and targeted ROSA26 locus serves as a sensitive reporter for MyoFB maturation. These studies identify a myofibroblast differentiation program that is distinct form other mesenchymal cells types and increases the known repertoire of mesenchymal cell types in the neonatal lung.

7.
Circulation ; 146(8): 623-638, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35880523

ABSTRACT

BACKGROUND: Cellular rejection after heart transplantation imparts significant morbidity and mortality. Current immunosuppressive strategies are imperfect, target recipient T cells, and have adverse effects. The innate immune response plays an essential role in the recruitment and activation of T cells. Targeting the donor innate immune response would represent the earliest interventional opportunity within the immune response cascade. There is limited knowledge about donor immune cell types and functions in the setting of cardiac transplantation, and no current therapeutics exist for targeting these cell populations. METHODS: Using genetic lineage tracing, cell ablation, and conditional gene deletion, we examined donor mononuclear phagocyte diversity and macrophage function during acute cellular rejection of transplanted hearts in mice. We performed single-cell RNA sequencing on donor and recipient macrophages and monocytes at multiple time points after transplantation. On the basis of our imaging and single-cell RNA sequencing data, we evaluated the functional relevance of donor CCR2+ (C-C chemokine receptor 2) and CCR2- macrophages using selective cell ablation strategies in donor grafts before transplant. Last, we performed functional validation that donor macrophages signal through MYD88 (myeloid differentiation primary response protein 88) to facilitate cellular rejection. RESULTS: Donor macrophages persisted in the rejecting transplanted heart and coexisted with recipient monocyte-derived macrophages. Single-cell RNA sequencing identified donor CCR2+ and CCR2- macrophage populations and revealed remarkable diversity among recipient monocytes, macrophages, and dendritic cells. Temporal analysis demonstrated that donor CCR2+ and CCR2- macrophages were transcriptionally distinct, underwent significant morphologic changes, and displayed unique activation signatures after transplantation. Although selective depletion of donor CCR2- macrophages reduced allograft survival, depletion of donor CCR2+ macrophages prolonged allograft survival. Pathway analysis revealed that donor CCR2+ macrophages are activated through MYD88/nuclear factor kappa light chain enhancer of activated B cells signaling. Deletion of MYD88 in donor macrophages resulted in reduced antigen-presenting cell recruitment, reduced ability of antigen-presenting cells to present antigen to T cells, decreased emergence of allograft-reactive T cells, and extended allograft survival. CONCLUSIONS: Distinct populations of donor and recipient macrophages coexist within the transplanted heart. Donor CCR2+ macrophages are key mediators of allograft rejection, and deletion of MYD88 signaling in donor macrophages is sufficient to suppress rejection and extend allograft survival. This highlights the therapeutic potential of donor heart-based interventions.


Subject(s)
Heart Transplantation , Animals , Graft Rejection/prevention & control , Heart Transplantation/adverse effects , Humans , Macrophages , Mice , Mice, Inbred C57BL , Myeloid Differentiation Factor 88/genetics , Tissue Donors
8.
Hippocampus ; 31(11): 1215-1232, 2021 11.
Article in English | MEDLINE | ID: mdl-34478219

ABSTRACT

The dentate gyrus not only gates the flow of information into the hippocampus, it also integrates and processes this information. Mossy cells (MCs) are a major type of excitatory neuron strategically located in the hilus of the dentate gyrus where they can contribute to this processing through networks of synapses with inhibitory neurons and dentate granule cells. Some prior work has suggested that MCs can form excitatory synapses with other MCs, but the role of these synapses in the network activity of the dentate gyrus has received little attention. Here, we investigated synaptic inputs to MCs in mouse hippocampal slices using a genetically encoded hybrid voltage sensor (hVOS) targeted to MCs by Cre-lox technology. This enabled optical recording of voltage changes from multiple MCs simultaneously. Stimulating granule cells and CA3 pyramidal cells activated well-established inputs to MCs and elicited synaptic responses as expected. However, the weak blockade of MC responses to granule cell layer stimulation by DCG-IV raised the possibility of another source of excitation. To evaluate synapses between MCs as this source, single MCs were stimulated focally. Stimulation of one MC above its action potential threshold evoked depolarizing responses in neighboring MCs that depended on glutamate receptors. Short latency responses of MCs to other MCs did not depend on release from granule cell axons. However, granule cells did contribute to the longer latency responses of MCs to stimulation of other MCs. Thus, MCs transmit their activity to other MCs both through direct synaptic coupling and through polysynaptic coupling with dentate granule cells. MC-MC synapses can redistribute information entering the dentate gyrus and thus shape and modulate the electrical activity underlying hippocampal functions such as navigation and memory, as well as excessive excitation during seizures.


Subject(s)
Dentate Gyrus , Mossy Fibers, Hippocampal , Animals , Dentate Gyrus/physiology , Hippocampus/physiology , Mice , Mossy Fibers, Hippocampal/physiology , Rats , Rats, Sprague-Dawley , Synapses/physiology
9.
Immunity ; 54(9): 2072-2088.e7, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34320366

ABSTRACT

Cardiac macrophages represent a heterogeneous cell population with distinct origins, dynamics, and functions. Recent studies have revealed that C-C Chemokine Receptor 2 positive (CCR2+) macrophages derived from infiltrating monocytes regulate myocardial inflammation and heart failure pathogenesis. Comparatively little is known about the functions of tissue resident (CCR2-) macrophages. Herein, we identified an essential role for CCR2- macrophages in the chronically failing heart. Depletion of CCR2- macrophages in mice with dilated cardiomyopathy accelerated mortality and impaired ventricular remodeling and coronary angiogenesis, adaptive changes necessary to maintain cardiac output in the setting of reduced cardiac contractility. Mechanistically, CCR2- macrophages interacted with neighboring cardiomyocytes via focal adhesion complexes and were activated in response to mechanical stretch through a transient receptor potential vanilloid 4 (TRPV4)-dependent pathway that controlled growth factor expression. These findings establish a role for tissue-resident macrophages in adaptive cardiac remodeling and implicate mechanical sensing in cardiac macrophage activation.


Subject(s)
Cardiomyopathy, Dilated/metabolism , Macrophage Activation/physiology , Macrophages/metabolism , Ventricular Remodeling/physiology , Animals , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/pathology , Humans , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Mutation , Myocardium/metabolism , Troponin T/genetics
10.
Science ; 373(6553)2021 07 23.
Article in English | MEDLINE | ID: mdl-34083450

ABSTRACT

The meninges contain adaptive immune cells that provide immunosurveillance of the central nervous system (CNS). These cells are thought to derive from the systemic circulation. Through single-cell analyses, confocal imaging, bone marrow chimeras, and parabiosis experiments, we show that meningeal B cells derive locally from the calvaria, which harbors a bone marrow niche for hematopoiesis. B cells reach the meninges from the calvaria through specialized vascular connections. This calvarial-meningeal path of B cell development may provide the CNS with a constant supply of B cells educated by CNS antigens. Conversely, we show that a subset of antigen-experienced B cells that populate the meninges in aging mice are blood-borne. These results identify a private source for meningeal B cells, which may help maintain immune privilege within the CNS.


Subject(s)
B-Lymphocyte Subsets/physiology , B-Lymphocytes/physiology , Bone Marrow Cells/physiology , Central Nervous System/immunology , Dura Mater/cytology , Lymphopoiesis , Meninges/cytology , Meninges/immunology , Skull/anatomy & histology , Aging , Animals , B-Lymphocyte Subsets/immunology , Cell Movement , Central Nervous System/physiology , Dura Mater/immunology , Fibroblasts/physiology , Homeostasis , Immune Privilege , Mice , Plasma Cells/physiology , Single-Cell Analysis
11.
Bone ; 148: 115941, 2021 07.
Article in English | MEDLINE | ID: mdl-33813068

ABSTRACT

Mitochondria are essential organelles that form highly complex, interconnected dynamic networks inside cells. The GTPase mitofusin 2 (MFN2) is a highly conserved outer mitochondrial membrane protein involved in the regulation of mitochondrial morphology, which can affect various metabolic and signaling functions. The role of mitochondria in bone formation remains unclear. Since MFN2 levels increase during osteoblast (OB) differentiation, we investigated the role of MFN2 in the osteolineage by crossing mice bearing floxed Mfn2 alleles with those bearing Prx-cre to generate cohorts of conditional knock out (cKO) animals. By ex vivo microCT, cKO female mice, but not males, display an increase in cortical thickness at 8, 18, and 30 weeks, compared to wild-type (WT) littermate controls. However, the cortical anabolic response to mechanical loading was not different between genotypes. To address how Mfn2 deficiency affects OB differentiation, bone marrow-derived mesenchymal stromal cells (MSCs) from both wild-type and cKO mice were cultured in osteogenic media with different levels of ß-glycerophosphate. cKO MSCs show increased mineralization and expression of multiple markers of OB differentiation only at the lower dose. Interestingly, despite showing the expected mitochondrial rounding and fragmentation due to loss of MFN2, cKO MSCs have an increase in oxygen consumption during the first 7 days of OB differentiation. Thus, in the early phases of osteogenesis, MFN2 restrains oxygen consumption thereby limiting differentiation and cortical bone accrual during homeostasis in vivo.


Subject(s)
GTP Phosphohydrolases , Osteogenesis , Animals , Cell Differentiation , Cortical Bone/diagnostic imaging , Female , GTP Phosphohydrolases/genetics , Mice , Mice, Knockout
12.
Hepatology ; 74(3): 1203-1219, 2021 09.
Article in English | MEDLINE | ID: mdl-33638902

ABSTRACT

BACKGROUND AND AIMS: Human transmembrane 6 superfamily 2 (TM6SF2) variant rs58542926 is associated with NAFLD and HCC. However, conflicting reports in germline Tm6sf2 knockout mice suggest no change or decreased very low density lipoprotein (VLDL) secretion and either unchanged or increased hepatic steatosis, with no increased fibrosis. We generated liver-specific Tm6Sf2 knockout mice (Tm6 LKO) to study VLDL secretion and the impact on development and progression of NAFLD. APPROACH AND RESULTS: Two independent lines of Tm6 LKO mice exhibited spontaneous hepatic steatosis. Targeted lipidomic analyses showed increased triglyceride species whose distribution and abundance phenocopied findings in mice with liver-specific deletion of microsomal triglyceride transfer protein. The VLDL triglyceride secretion was reduced with small, underlipidated particles and unchanged or increased apolipoprotein B. Liver-specific adeno-associated viral, serotype 8 (AAV8) rescue using either wild-type or mutant E167K-Tm6 reduced hepatic steatosis and improved VLDL secretion. The Tm6 LKO mice fed a high milk-fat diet for 3 weeks exhibited increased steatosis and fibrosis, and those phenotypes were further exacerbated when mice were fed fibrogenic, high fat/fructose diets for 20 weeks. In two models of HCC, either neonatal mice injected with streptozotocin (NASH/STAM) and high-fat fed or with diethylnitrosamine injection plus fibrogenic diet feeding, Tm6 LKO mice exhibited increased steatosis, greater tumor burden, and increased tumor area versus Tm6 flox controls. Additionally, diethylnitrosamine-injected and fibrogenic diet-fed Tm6 LKO mice administered wild-type Tm6 or E167K-mutant Tm6 AAV8 revealed significant tumor attenuation, with tumor burden inversely correlated with Tm6 protein levels. CONCLUSIONS: Liver-specific Tm6sf2 deletion impairs VLDL secretion, promoting hepatic steatosis, fibrosis, and accelerated development of HCC, which was mitigated with AAV8- mediated rescue.


Subject(s)
Carcinoma, Hepatocellular/genetics , Fatty Liver/genetics , Lipoproteins, VLDL/metabolism , Liver Cirrhosis/genetics , Liver Neoplasms/genetics , Liver/metabolism , Membrane Proteins/genetics , Animals , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Fatty Liver/metabolism , Lipidomics , Liver/pathology , Liver Cirrhosis/metabolism , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Mice , Mice, Knockout , Non-alcoholic Fatty Liver Disease/genetics , Triglycerides/metabolism
14.
Cell ; 184(4): 1000-1016.e27, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33508229

ABSTRACT

Despite the established dogma of central nervous system (CNS) immune privilege, neuroimmune interactions play an active role in diverse neurological disorders. However, the precise mechanisms underlying CNS immune surveillance remain elusive; particularly, the anatomical sites where peripheral adaptive immunity can sample CNS-derived antigens and the cellular and molecular mediators orchestrating this surveillance. Here, we demonstrate that CNS-derived antigens in the cerebrospinal fluid (CSF) accumulate around the dural sinuses, are captured by local antigen-presenting cells, and are presented to patrolling T cells. This surveillance is enabled by endothelial and mural cells forming the sinus stromal niche. T cell recognition of CSF-derived antigens at this site promoted tissue resident phenotypes and effector functions within the dural meninges. These findings highlight the critical role of dural sinuses as a neuroimmune interface, where brain antigens are surveyed under steady-state conditions, and shed light on age-related dysfunction and neuroinflammatory attack in animal models of multiple sclerosis.


Subject(s)
Cranial Sinuses/immunology , Cranial Sinuses/physiology , Dura Mater/immunology , Dura Mater/physiology , Animals , Antigen Presentation/immunology , Antigen-Presenting Cells/metabolism , Antigens/cerebrospinal fluid , Cellular Senescence , Chemokine CXCL12/pharmacology , Dura Mater/blood supply , Female , Homeostasis , Humans , Immunity , Male , Mice, Inbred C57BL , Phenotype , Stromal Cells/cytology , T-Lymphocytes/cytology
15.
Diabetes ; 70(2): 436-448, 2021 02.
Article in English | MEDLINE | ID: mdl-33168621

ABSTRACT

Insulin secretory granules (SGs) mediate the regulated secretion of insulin, which is essential for glucose homeostasis. The basic machinery responsible for this regulated exocytosis consists of specific proteins present both at the plasma membrane and on insulin SGs. The protein composition of insulin SGs thus dictates their release properties, yet the mechanisms controlling insulin SG formation, which determine this molecular composition, remain poorly understood. VPS41, a component of the endolysosomal tethering homotypic fusion and vacuole protein sorting (HOPS) complex, was recently identified as a cytosolic factor involved in the formation of neuroendocrine and neuronal granules. We now find that VPS41 is required for insulin SG biogenesis and regulated insulin secretion. Loss of VPS41 in pancreatic ß-cells leads to a reduction in insulin SG number, changes in their transmembrane protein composition, and defects in granule-regulated exocytosis. Exploring a human point mutation, identified in patients with neurological but no endocrine defects, we show that the effect on SG formation is independent of HOPS complex formation. Finally, we report that mice with a deletion of VPS41 specifically in ß-cells develop diabetes due to severe depletion of insulin SG content and a defect in insulin secretion. In sum, our data demonstrate that VPS41 contributes to glucose homeostasis and metabolism.


Subject(s)
Diabetes Mellitus/metabolism , Insulin Secretion/genetics , Insulin-Secreting Cells/metabolism , Secretory Vesicles/metabolism , Vesicular Transport Proteins/metabolism , Animals , Cell Line , Diabetes Mellitus/genetics , Exocytosis/physiology , Glucose Tolerance Test , Mice , Mice, Knockout , Rats , Vesicular Transport Proteins/genetics
16.
J Biol Chem ; 295(46): 15782-15793, 2020 11 13.
Article in English | MEDLINE | ID: mdl-32938716

ABSTRACT

Much of our understanding of the spatial organization of and interactions between cellular organelles and macromolecular complexes has been the result of imaging studies utilizing either light- or electron-based microscopic analyses. These classical approaches, while insightful, are nonetheless limited either by restrictions in resolution or by the sheer complexity of generating multidimensional data. Recent advances in the use and application of X-rays to acquire micro- and nanotomographic data sets offer an alternative methodology to visualize cellular architecture at the nanoscale. These new approaches allow for the subcellular analyses of unstained vitrified cells and three-dimensional localization of specific protein targets and have served as an essential tool in bridging light and electron correlative microscopy experiments. Here, we review the theory, instrumentation details, acquisition principles, and applications of both soft X-ray tomography and X-ray microscopy and how the use of these techniques offers a succinct means of analyzing three-dimensional cellular architecture. We discuss some of the recent work that has taken advantage of these approaches and detail how they have become integral in correlative microscopy workflows.


Subject(s)
Imaging, Three-Dimensional/methods , Tomography, X-Ray/methods , Contrast Media/chemistry , Microscopy, Electron, Scanning , Nanoparticles/chemistry , Saccharomyces cerevisiae/ultrastructure , Tomography, X-Ray/instrumentation , X-Ray Microtomography
17.
Elife ; 92020 05 29.
Article in English | MEDLINE | ID: mdl-32469313

ABSTRACT

Plasmodium falciparum is a causative agent of human malaria. Sixty percent of mRNAs from its extremely AT-rich (81%) genome harbor long polyadenosine (polyA) runs within their ORFs, distinguishing the parasite from its hosts and other sequenced organisms. Recent studies indicate polyA runs cause ribosome stalling and frameshifting, triggering mRNA surveillance pathways and attenuating protein synthesis. Here, we show that P. falciparum is an exception to this rule. We demonstrate that both endogenous genes and reporter sequences containing long polyA runs are efficiently and accurately translated in P. falciparum cells. We show that polyA runs do not elicit any response from No Go Decay (NGD) or result in the production of frameshifted proteins. This is in stark contrast to what we observe in human cells or T. thermophila, an organism with similar AT-content. Finally, using stalling reporters we show that Plasmodium cells evolved not to have a fully functional NGD pathway.


Subject(s)
Adenosine/genetics , Plasmodium falciparum/genetics , Protein Biosynthesis/genetics , RNA Stability/genetics , RNA, Messenger/genetics , Adenosine/metabolism , Cells, Cultured , Erythrocytes , Fibroblasts , Humans , Malaria, Falciparum/parasitology , Plasmodium falciparum/metabolism , Polymers/metabolism , RNA, Messenger/metabolism , RNA, Protozoan/genetics , RNA, Protozoan/metabolism , Ribosomes/genetics , Ribosomes/metabolism
18.
J Biomech Eng ; 142(4)2020 04 01.
Article in English | MEDLINE | ID: mdl-31536113

ABSTRACT

Trans-synovial solute transport plays a critical role in the clearance of intra-articularly (IA) delivered drugs. In this study, we present a computational finite element model (FEM) of solute transport through the synovium validated by experiments on synovial explants. Unsteady diffusion of urea, a small uncharged molecule, was measured through devitalized porcine and human synovium using custom-built diffusion chambers. A multiphasic computational model was constructed and optimized with the experimental data to extract effective diffusivity for urea within the synovium. A monotonic decrease in urea concentration was observed in the donor bath over time, with an effective diffusivity found to be an order of magnitude lower in synovium versus that measured in free solution. Parametric studies incorporating an intimal cell layer with varying thickness and varying effective diffusivities were performed, revealing a dependence of drug clearance kinetics on both parameters. The findings of this study indicate that the synovial matrix impedes urea solute transport out of the joint with little retention of the solute in the matrix.


Subject(s)
Finite Element Analysis , Synovial Membrane , Animals , Biological Transport , Cartilage, Articular , Diffusion , Models, Biological , Swine
19.
Curr Opin Biomed Eng ; 12: 51-58, 2019 Dec.
Article in English | MEDLINE | ID: mdl-32864524

ABSTRACT

The detection of action potentials and the characterization of their waveform represent basic benchmarks for evaluating optical sensors of voltage. The effectiveness of a voltage sensor in reporting action potentials will determine its usefulness in voltage imaging experiments designed for the study of neural circuitry. The hybrid voltage sensor (hVOS) technique is based on a sensing mechanism with a rapid response to voltage changes. hVOS imaging is thus well suited for optical studies of action potentials. This technique detects action potentials in intact brain slices with an excellent signal-to-noise ratio. These optical action potentials recapitulate voltage recordings with high temporal fidelity. In different genetically-defined types of neurons targeted by cre-lox technology, hVOS recordings of action potentials recapitulate the expected differences in duration. Furthermore, by targeting an hVOS probe to axons, imaging experiments can follow action potential propagation and document dynamic changes in waveform resulting from use-dependent plasticity.

20.
Stem Cell Reports ; 11(2): 410-424, 2018 08 14.
Article in English | MEDLINE | ID: mdl-30017821

ABSTRACT

Intestinal epithelial stem cell (IESC) fate is promoted by two major transcriptional regulators, the TCF4/ß-catenin complex and ASCL2, which drive expression of IESC-specific factors, including Lgr5, Ephb2, and Rnf43. Canonical Wnt signaling via TCF4/ß-catenin directly transactivates Ascl2, which in turn auto-regulates its own expression. Conversely, Let-7 microRNAs antagonize the IESC lineage by repressing specific mRNA targets. Here, we identify the zinc finger transcription factor PLAGL2 as a Let-7 target that regulates IESC fate. PLAGL2 drives an IESC expression signature, activates Wnt gene expression, and enhances a TCF/LEF reporter in intestinal organoids. In parallel, via cell-autonomous mechanisms, PLAGL2 is required for lineage clonal expansion and directly enhances expression of ASCL2. PLAGL2 also supports enteroid growth and survival in the context of Wnt ligand depletion. PLAGL2 expression is strongly associated with an IESC signature in colorectal cancer and may be responsible for contributing to the aberrant activation of an immature phenotype.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , DNA-Binding Proteins/metabolism , Epithelial Cells/metabolism , Intestinal Mucosa/metabolism , RNA-Binding Proteins/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Transcription Factors/metabolism , Transcriptional Activation , Animals , Biomarkers , Cell Culture Techniques , Cell Line, Tumor , DNA-Binding Proteins/genetics , Humans , Mice , RNA, Small Interfering/genetics , RNA-Binding Proteins/genetics , Signal Transduction , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL