Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Struct Funct ; 227(5): 1577-1597, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35355136

ABSTRACT

The structural connectivity of animal brains can be revealed using post-mortem diffusion-weighted magnetic resonance imaging (MRI). Despite the existence of several structural atlases of avian brains, few of them address the bird's structural connectivity. In this study, a novel atlas of the structural connectivity is proposed for the male Japanese quail (Coturnix japonica), aiming at investigating two lines divergent on their emotionality trait: the short tonic immobility (STI) and the long tonic immobility (LTI) lines. The STI line presents a low emotionality trait, while the LTI line expresses a high emotionality trait. 21 male Japanese quail brains from both lines were scanned post-mortem for this study, using a preclinical Bruker 11.7 T MRI scanner. Diffusion-weighted MRI was performed using a 3D segmented echo planar imaging (EPI) pulsed gradient spin-echo (PGSE) sequence with a 200 [Formula: see text]m isotropic resolution, 75 diffusion-encoding directions and a b-value fixed at 4500 s/mm2. Anatomical MRI was likewise performed using a 2D anatomical T2-weighted spin-echo (SE) sequence with a 150 [Formula: see text]m isotropic resolution. This very first anatomical connectivity atlas of the male Japanese quail reveals 34 labeled fiber tracts and the existence of structural differences between the connectivity patterns characterizing the two lines. Thus, the link between the male Japanese quail's connectivity and its underlying anatomical structures has reached a better understanding.


Subject(s)
Coturnix , Diffusion Magnetic Resonance Imaging , Animals , Brain/diagnostic imaging , Echo-Planar Imaging , Male
2.
Neuroimage ; 236: 118080, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33882348

ABSTRACT

The brainstem is one of the most densely packed areas of the central nervous system in terms of gray, but also white, matter structures and, therefore, is a highly functional hub. It has mainly been studied by the means of histological techniques, which requires several hundreds of slices with a loss of the 3D coherence of the whole specimen. Access to the inner structure of the brainstem is possible using Magnetic Resonance Imaging (MRI), but this method has a limited spatial resolution and contrast in vivo. Here, we scanned an ex vivo specimen using an ultra-high field (11.7T) preclinical MRI scanner providing data at a mesoscopic scale for anatomical T2-weighted (100 µm and 185 µm isotropic) and diffusion-weighted imaging (300 µm isotropic). We then proposed a hierarchical segmentation of the inner gray matter of the brainstem and defined a set of rules for each segmented anatomical class. These rules were gathered in a freely accessible web-based application, WIKIBrainStem (https://fibratlas.univ-tours.fr/brainstems/index.html), for 99 structures, from which 13 were subdivided into 29 substructures. This segmentation is, to date, the most detailed one developed from ex vivo MRI of the brainstem. This should be regarded as a tool that will be complemented by future results of alternative methods, such as Optical Coherence Tomography, Polarized Light Imaging or histology… This is a mandatory step prior to segmenting multiple specimens, which will be used to create a probabilistic automated segmentation method of ex vivo, but also in vivo, brainstem and may be used for targeting anatomical structures of interest in managing some degenerative or psychiatric disorders.


Subject(s)
Atlases as Topic , Brain Stem/anatomy & histology , Gray Matter/anatomy & histology , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Brain Stem/diagnostic imaging , Gray Matter/diagnostic imaging , Humans
3.
Brain Struct Funct ; 223(5): 2157-2179, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29387938

ABSTRACT

The human hippocampus plays a key role in memory management and is one of the first structures affected by Alzheimer's disease. Ultra-high magnetic resonance imaging provides access to its inner structure in vivo. However, gradient limitations on clinical systems hinder access to its inner connectivity and microstructure. A major target of this paper is the demonstration of diffusion MRI potential, using ultra-high field (11.7 T) and strong gradients (750 mT/m), to reveal the extra- and intra-hippocampal connectivity in addition to its microstructure. To this purpose, a multiple-shell diffusion-weighted acquisition protocol was developed to reach an ultra-high spatio-angular resolution with a good signal-to-noise ratio. The MRI data set was analyzed using analytical Q-Ball Imaging, Diffusion Tensor Imaging (DTI), and Neurite Orientation Dispersion and Density Imaging models. High Angular Resolution Diffusion Imaging estimates allowed us to obtain an accurate tractography resolving more complex fiber architecture than DTI models, and subsequently provided a map of the cross-regional connectivity. The neurite density was akin to that found in the histological literature, revealing the three hippocampal layers. Moreover, a gradient of connectivity and neurite density was observed between the anterior and the posterior part of the hippocampus. These results demonstrate that ex vivo ultra-high field/ultra-high gradients diffusion-weighted MRI allows the mapping of the inner connectivity of the human hippocampus, its microstructure, and to accurately reconstruct elements of the polysynaptic intra-hippocampal pathway using fiber tractography techniques at very high spatial/angular resolutions.


Subject(s)
Diffusion Magnetic Resonance Imaging , Hippocampus/diagnostic imaging , Hippocampus/ultrastructure , Image Processing, Computer-Assisted , Nerve Net/diagnostic imaging , Neural Pathways/diagnostic imaging , Aged, 80 and over , Autopsy , Brain Mapping , Humans , Male , Nerve Net/ultrastructure , Neural Pathways/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...