Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
iScience ; 27(4): 109343, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38510147

ABSTRACT

Spatial genome organization within the nucleus influences major biological processes and is impacted by the configuration of linear chromosomes. Here, we applied 3D spatial statistics and modeling on high-resolution telomere and centromere 3D-structured illumination microscopy images in cancer cells. We found a multi-scale organization of telomeres that dynamically evolved from a mixed clustered-and-regular distribution in early G1 to a purely regular distribution as cells progressed through the cell cycle. In parallel, our analysis revealed two pools of peripheral and internal telomeres, the proportions of which were inverted during the cell cycle. We then conducted a targeted screen using MadID to identify the molecular pathways driving or maintaining telomere anchoring to the nuclear envelope observed in early G1. Lamina-associated polypeptide (LAP) proteins were found transiently localized to telomeres in anaphase, a stage where LAP2α initiates the reformation of the nuclear envelope, and impacted telomere redistribution in the next interphase together with their partner barrier-to-autointegration factor (BAF).

2.
Dev Cell ; 59(3): 339-350.e4, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38198889

ABSTRACT

Congenital heart malformations include mitral valve defects, which remain largely unexplained. During embryogenesis, a restricted population of endocardial cells within the atrioventricular canal undergoes an endothelial-to-mesenchymal transition to give rise to mitral valvular cells. However, the identity and fate decisions of these progenitors as well as the behavior and distribution of their derivatives in valve leaflets remain unknown. We used single-cell RNA sequencing (scRNA-seq) of genetically labeled endocardial cells and microdissected mouse embryonic and postnatal mitral valves to characterize the developmental road. We defined the metabolic processes underlying the specification of the progenitors and their contributions to subtypes of valvular cells. Using retrospective multicolor clonal analysis, we describe specific modes of growth and behavior of endocardial cell-derived clones, which build up, in a proper manner, functional valve leaflets. Our data identify how both genetic and metabolic mechanisms specifically drive the fate of a subset of endocardial cells toward their distinct clonal contribution to the formation of the valve.


Subject(s)
Embryonic Development , Mitral Valve , Animals , Mice , Mitral Valve/abnormalities , Mitral Valve/metabolism , Retrospective Studies , Cell Differentiation
3.
ACS Photonics ; 10(12): 4104-4111, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38145164

ABSTRACT

Simultaneous imaging of multiple labels in tissues is key to studying complex biological processes. Although strategies for color multiphoton excitation have been established, chromatic aberration remains a major problem when multiple excitation wavelengths are used in a scanning microscope. Chromatic aberration introduces a spatial shift between the foci of beams of different wavelengths that varies across the field of view, severely degrading the performance of color imaging. In this work, we propose an adaptive correction strategy that solves this problem in two-beam microscopy techniques. Axial chromatic aberration is corrected by a refractive phase mask that introduces pure defocus into one beam, while lateral chromatic aberration is corrected by a piezoelectric mirror that dynamically compensates for lateral shifts during scanning. We show that this light-efficient approach allows seamless chromatic correction over the entire field of view of different multiphoton objectives without compromising spatial and temporal resolution and that the effective area for beam-mixing processes can be increased by more than 1 order of magnitude. We illustrate this approach with simultaneous three-color, two-photon imaging of developing zebrafish embryos and fixed Brainbow mouse brain slices over large areas. These results establish a robust and efficient method for chromatically corrected multiphoton imaging.

4.
Nat Methods ; 20(12): 1930-1938, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37996751

ABSTRACT

Despite the need for quantitative measurements of light intensity across many scientific disciplines, existing technologies for measuring light dose at the sample of a fluorescence microscope cannot simultaneously retrieve light intensity along with spatial distribution over a wide range of wavelengths and intensities. To address this limitation, we developed two rapid and straightforward protocols that use organic dyes and fluorescent proteins as actinometers. The first protocol relies on molecular systems whose fluorescence intensity decays and/or rises in a monoexponential fashion when constant light is applied. The second protocol relies on a broad-absorbing photochemically inert fluorophore to back-calculate the light intensity from one wavelength to another. As a demonstration of their use, the protocols are applied to quantitatively characterize the spatial distribution of light of various fluorescence imaging systems, and to calibrate illumination of commercially available instruments and light sources.


Subject(s)
Fluorescent Dyes , Fluorescence , Microscopy, Fluorescence/methods , Fluorescent Dyes/chemistry , Spectrometry, Fluorescence
5.
Sci Adv ; 9(35): eadg7519, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37656795

ABSTRACT

The maintenance of neural stem cells (NSCs) in the adult brain depends on their activation frequency and division mode. Using long-term intravital imaging of NSCs in the zebrafish adult telencephalon, we reveal that apical surface area and expression of the Notch ligand DeltaA predict these NSC decisions. deltaA-negative NSCs constitute a bona fide self-renewing NSC pool and systematically engage in asymmetric divisions generating a self-renewing deltaAneg daughter, which regains the size and behavior of its mother, and a neurogenic deltaApos daughter, eventually engaged in neuronal production following further quiescence-division phases. Pharmacological and genetic manipulations of Notch, DeltaA, and apical size further show that the prediction of activation frequency by apical size and the asymmetric divisions of deltaAneg NSCs are functionally independent of Notch. These results provide dynamic qualitative and quantitative readouts of NSC lineage progression in vivo and support a hierarchical organization of NSCs in differently fated subpopulations.


Subject(s)
Neural Stem Cells , Zebrafish , Animals , Neurons/physiology , Cell Division , Neurogenesis
6.
Sci Rep ; 13(1): 7850, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37188736

ABSTRACT

Accurate interpretation of third harmonic generation (THG) microscopy images in terms of sample optical properties and microstructure is generally hampered by the presence of excitation field distortions resulting from sample heterogeneity. Numerical methods that account for these artifacts need to be established. In this work, we experimentally and numerically analyze the THG contrast obtained from stretched hollow glass pipettes embedded in different liquids. We also characterize the nonlinear optical properties of 2,2[Formula: see text]-thiodiethanol (TDE), a water-soluble index-matching medium. We find that index discontinuity not only changes the level and modulation amplitude of polarization-resolved THG signals, but can even change the polarization direction producing maximum THG near interfaces. We then show that a finite-difference time-domain (FDTD) modeling strategy can accurately account for contrast observed in optically heterogeneous samples, whereas reference Fourier-based numerical approaches are accurate only in the absence of index mismatch. This work opens perspectives for interpreting THG microscopy images of tubular objects and other geometries.

7.
Light Sci Appl ; 12(1): 29, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36702815

ABSTRACT

Mapping red blood cells (RBCs) flow and oxygenation is of key importance for analyzing brain and tissue physiology. Current microscopy methods are limited either in sensitivity or in spatio-temporal resolution. In this work, we introduce a novel approach based on label-free third-order sum-frequency generation (TSFG) and third-harmonic generation (THG) contrasts. First, we propose a novel experimental scheme for color TSFG microscopy, which provides simultaneous measurements at several wavelengths encompassing the Soret absorption band of hemoglobin. We show that there is a strong three-photon (3P) resonance related to the Soret band of hemoglobin in THG and TSFG signals from zebrafish and human RBCs, and that this resonance is sensitive to RBC oxygenation state. We demonstrate that our color TSFG implementation enables specific detection of flowing RBCs in zebrafish embryos and is sensitive to RBC oxygenation dynamics with single-cell resolution and microsecond pixel times. Moreover, it can be implemented on a 3P microscope and provides label-free RBC-specific contrast at depths exceeding 600 µm in live adult zebrafish brain. Our results establish a new multiphoton contrast extending the palette of deep-tissue microscopy.

8.
PLoS Comput Biol ; 18(7): e1010211, 2022 07.
Article in English | MEDLINE | ID: mdl-35789212

ABSTRACT

Tridimensional microscopy and algorithms for automated segmentation and tracing are revolutionizing neuroscience through the generation of growing libraries of neuron reconstructions. Innovative computational methods are needed to analyze these neuronal traces. In particular, means to characterize the geometric properties of traced neurites along their trajectory have been lacking. Here, we propose a local tridimensional (3D) scale metric derived from differential geometry, measuring for each point of a curve the characteristic length where it is fully 3D as opposed to being embedded in a 2D plane or 1D line. The larger this metric is and the more complex the local 3D loops and turns of the curve are. Available through the GeNePy3D open-source Python quantitative geometry library (https://genepy3d.gitlab.io), this approach termed nAdder offers new means of describing and comparing axonal and dendritic arbors. We validate this metric on simulated and real traces. By reanalysing a published zebrafish larva whole brain dataset, we show its ability to characterize different population of commissural axons, distinguish afferent connections to a target region and differentiate portions of axons and dendrites according to their behavior, shedding new light on the stereotypical nature of neurites' local geometry.


Subject(s)
Neurons , Zebrafish , Algorithms , Animals , Axons/physiology , Neurites , Neurons/physiology
9.
Elife ; 112022 02 15.
Article in English | MEDLINE | ID: mdl-35166669

ABSTRACT

Three-photon excitation has recently been demonstrated as an effective method to perform intravital microscopy in deep, previously inaccessible regions of the mouse brain. The applicability of 3-photon excitation for deep imaging of other, more heterogeneous tissue types has been much less explored. In this work, we analyze the benefit of high-pulse-energy 1 MHz pulse-repetition-rate infrared excitation near 1300 and 1700 nm for in-depth imaging of tumorous and bone tissue. We show that this excitation regime provides a more than 2-fold increased imaging depth in tumor and bone tissue compared to the illumination conditions commonly used in 2-photon excitation, due to improved excitation confinement and reduced scattering. We also show that simultaneous 3- and 4-photon processes can be effectively induced with a single laser line, enabling the combined detection of blue to far-red fluorescence together with second and third harmonic generation without chromatic aberration, at excitation intensities compatible with live tissue imaging. Finally, we analyze photoperturbation thresholds in this excitation regime and derive setpoints for safe cell imaging. Together, these results indicate that infrared high-pulse-energy low-repetition-rate excitation opens novel perspectives for intravital deep-tissue microscopy of multiple parameters in strongly scattering tissues and organs.


Subject(s)
Deep Learning , Microscopy, Fluorescence, Multiphoton/methods , Neoplasms, Experimental/diagnostic imaging , Second Harmonic Generation Microscopy/methods , Animals , Bone and Bones/diagnostic imaging , Brain/diagnostic imaging , Cell Line, Tumor , Cell Survival/physiology , Fluorescent Dyes/chemistry , Image Processing, Computer-Assisted , Male , Mice
10.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Article in English | MEDLINE | ID: mdl-34907016

ABSTRACT

Clathrin-mediated endocytosis is the major route of entry of cargos into cells and thus underpins many physiological processes. During endocytosis, an area of flat membrane is remodeled by proteins to create a spherical vesicle against intracellular forces. The protein machinery which mediates this membrane bending in plants is unknown. However, it is known that plant endocytosis is actin independent, thus indicating that plants utilize a unique mechanism to mediate membrane bending against high-turgor pressure compared to other model systems. Here, we investigate the TPLATE complex, a plant-specific endocytosis protein complex. It has been thought to function as a classical adaptor functioning underneath the clathrin coat. However, by using biochemical and advanced live microscopy approaches, we found that TPLATE is peripherally associated with clathrin-coated vesicles and localizes at the rim of endocytosis events. As this localization is more fitting to the protein machinery involved in membrane bending during endocytosis, we examined cells in which the TPLATE complex was disrupted and found that the clathrin structures present as flat patches. This suggests a requirement of the TPLATE complex for membrane bending during plant clathrin-mediated endocytosis. Next, we used in vitro biophysical assays to confirm that the TPLATE complex possesses protein domains with intrinsic membrane remodeling activity. These results redefine the role of the TPLATE complex and implicate it as a key component of the evolutionarily distinct plant endocytosis mechanism, which mediates endocytic membrane bending against the high-turgor pressure in plant cells.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Cell Membrane/physiology , Endocytosis/physiology , Plant Cells/physiology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Clathrin , Fluorescent Dyes , Microscopy, Electron, Scanning Transmission , Microscopy, Fluorescence/methods , Seedlings
11.
Sci Rep ; 11(1): 22171, 2021 11 12.
Article in English | MEDLINE | ID: mdl-34772978

ABSTRACT

Solar ultraviolet longwave UVA1 exposure of human skin has short-term consequences at cellular and molecular level, leading at long-term to photoaging. Following exposure, reactive oxygen species (ROS) are generated, inducing oxidative stress that might impair cellular metabolic activity. However, the dynamic of UVA1 impact on cellular metabolism remains unknown because of lacking adequate live imaging techniques. Here we assess the UVA1-induced metabolic stress response in reconstructed human skin with multicolor two-photon fluorescence lifetime microscopy (FLIM). Simultaneous imaging of nicotinamide adenine dinucleotide (NAD(P)H) and flavin adenine dinucleotide (FAD) by wavelength mixing allows quantifying cellular metabolism in function of NAD(P)+/NAD(P)H and FAD/FADH2 redox ratios. After UVA1 exposure, we observe an increase of fraction of bound NAD(P)H and decrease of fraction of bound FAD indicating a metabolic switch from glycolysis to oxidative phosphorylation or oxidative stress possibly correlated to ROS generation. NAD(P)H and FAD biomarkers have unique temporal dynamic and sensitivity to skin cell types and UVA1 dose. While the FAD biomarker is UVA1 dose-dependent in keratinocytes, the NAD(P)H biomarker shows no dose dependence in keratinocytes, but is directly affected after exposure in fibroblasts, thus reflecting different skin cells sensitivities to oxidative stress. Finally, we show that a sunscreen including a UVA1 filter prevents UVA1 metabolic stress response from occurring.


Subject(s)
Flavin-Adenine Dinucleotide/metabolism , NADP/metabolism , Skin/metabolism , Skin/radiation effects , Stress, Physiological/radiation effects , Ultraviolet Rays , Biomarkers , Deep Learning , Fluorescent Antibody Technique , Humans , Immunohistochemistry , Microscopy, Fluorescence , Optical Imaging , Sunlight
12.
Cell Stem Cell ; 28(8): 1457-1472.e12, 2021 08 05.
Article in English | MEDLINE | ID: mdl-33823144

ABSTRACT

Neural stem cell (NSC) populations persist in the adult vertebrate brain over a lifetime, and their homeostasis is controlled at the population level through unknown mechanisms. Here, we combine dynamic imaging of entire NSC populations in their in vivo niche over several weeks with pharmacological manipulations, mathematical modeling, and spatial statistics and demonstrate that NSCs use spatiotemporally resolved local feedback signals to coordinate their decision to divide in adult zebrafish brains. These involve Notch-mediated short-range inhibition from transient neural progenitors and a dispersion effect from the dividing NSCs themselves exerted with a delay of 9-12 days. Simulations from a stochastic NSC lattice model capturing these interactions demonstrate that these signals are linked by lineage progression and control the spatiotemporal distribution of output neurons. These results highlight how local and temporally delayed interactions occurring between brain germinal cells generate self-propagating dynamics that maintain NSC population homeostasis and coordinate specific spatiotemporal correlations.


Subject(s)
Neural Stem Cells , Neurogenesis , Animals , Brain , Cell Proliferation , Feedback , Zebrafish
13.
ACS Photonics ; 7(4): 1036-1049, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-33335947

ABSTRACT

Two-photon light-sheet microscopy (2P-SPIM) provides a unique combination of advantages for fast and deep fluorescence imaging in live tissues. Detecting coherent signals such as second-harmonic generation (SHG) in 2P-SPIM in addition to fluorescence would open further imaging opportunities. However, light-sheet microscopy involves an orthogonal configuration of illumination and detection that questions the ability to detect coherent signals. Indeed, coherent scattering from micron-sized structures occurs predominantly along the illumination beam. By contrast, point-like sources such as SHG nanocrystals can efficiently scatter light in multiple directions and be detected using the orthogonal geometry of a light-sheet microscope. This study investigates the suitability of SHG light-sheet microscopy (SHG-SPIM) for fast imaging of SHG nanoprobes. Parameters that govern the detection efficiency of KTiOPO4 and BaTiO3 nanocrystals using SHG-SPIM are investigated theoretically and experimentally. The effects of incident polarization, detection numerical aperture, nanocrystal rotational motion, and second-order susceptibility tensor symmetries on the detectability of SHG nanoprobes in this specific geometry are clarified. Guidelines for optimizing SHG-SPIM imaging are established, enabling fast in vivo light-sheet imaging combining SHG and two-photon excited fluorescence. Finally, microangiography was achieved in live zebrafish embryos by SHG imaging at up to 180 frames per second and single-particle tracking of SHG nanoprobes in the blood flow.

14.
Biomed Opt Express ; 11(10): 6012-6026, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33150002

ABSTRACT

Improving the imaging speed of multiphoton microscopy is an active research field. Among recent strategies, light-sheet illumination holds distinctive advantages for achieving fast imaging in vivo. However, photoperturbation in multiphoton light-sheet microscopy remains poorly investigated. We show here that the heart beat rate of zebrafish embryos is a sensitive probe of linear and nonlinear photoperturbations. By analyzing its behavior with respect to laser power, pulse frequency and wavelength, we derive guidelines to find the best balance between signal and photoperturbation. We then demonstrate one order-of-magnitude signal enhancement over previous implementations by optimizing the laser pulse frequency. These results open new opportunities for fast live tissue imaging.

15.
J Vis Exp ; (159)2020 05 21.
Article in English | MEDLINE | ID: mdl-32510512

ABSTRACT

Protoplasmic astrocytes (PrA) located in the mouse cerebral cortex are tightly juxtaposed, forming an apparently continuous three-dimensional matrix at adult stages. Thus far, no immunostaining strategy can single them out and segment their morphology in mature animals and over the course of corticogenesis. Cortical PrA originate from progenitors located in the dorsal pallium and can easily be targeted using in utero electroporation of integrative vectors. A protocol is presented here to label these cells with the multiaddressable genome-integrating color (MAGIC) Markers strategy, which relies on piggyBac/Tol2 transposition and Cre/lox recombination to stochastically express distinct fluorescent proteins (blue, cyan, yellow, and red) addressed to specific subcellular compartments. This multicolor fate mapping strategy enables to mark in situ nearby cortical progenitors with combinations of color markers prior to the start of gliogenesis and to track their descendants, including astrocytes, from embryonic to adult stages at the individual cell level. Semi-sparse labeling achieved by adjusting the concentration of electroporated vectors and color contrasts provided by the Multiaddressable Genome-Integrating Color Markers (MAGIC Markers or MM) enable to individualize astrocytes and single out their territory and complex morphology despite their dense anatomical arrangement. Presented here is a comprehensive experimental workflow including the details of the electroporation procedure, multichannel image stacks acquisition by confocal microscopy, and computer-assisted three-dimensional segmentation that will enable the experimenter to assess individual PrA volume and morphology. In summary, electroporation of MAGIC Markers provides a convenient method to individually label numerous astrocytes and gain access to their anatomical features at different developmental stages. This technique will be useful to analyze cortical astrocyte morphological properties in various mouse models without resorting to complex crosses with transgenic reporter lines.


Subject(s)
Astrocytes/cytology , Cerebral Cortex/cytology , Electroporation/methods , Animals , Color , Female , Mice , Neurogenesis
16.
Nat Commun ; 10(1): 4884, 2019 10 25.
Article in English | MEDLINE | ID: mdl-31653848

ABSTRACT

Astrocytes play essential roles in the neural tissue where they form a continuous network, while displaying important local heterogeneity. Here, we performed multiclonal lineage tracing using combinatorial genetic markers together with a new large volume color imaging approach to study astrocyte development in the mouse cortex. We show that cortical astrocyte clones intermix with their neighbors and display extensive variability in terms of spatial organization, number and subtypes of cells generated. Clones develop through 3D spatial dispersion, while at the individual level astrocytes acquire progressively their complex morphology. Furthermore, we find that the astroglial network is supplied both before and after birth by ventricular progenitors that scatter in the neocortex and can give rise to protoplasmic as well as pial astrocyte subtypes. Altogether, these data suggest a model in which astrocyte precursors colonize the neocortex perinatally in a non-ordered manner, with local environment likely determining astrocyte clonal expansion and final morphotype.


Subject(s)
Astrocytes/cytology , Cell Differentiation , Cerebral Cortex/cytology , Animals , Astrocytes/metabolism , Cell Lineage , Cell Plasticity , Cell Proliferation , Clone Cells/cytology , Mice
17.
Nature ; 574(7778): E17, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31582857

ABSTRACT

An Amendment to this paper has been published and can be accessed via a link at the top of the paper.

18.
Nature ; 573(7775): E4, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31488913

ABSTRACT

An Amendment to this paper has been published and can be accessed via a link at the top of the paper.

19.
Nature ; 573(7773): 266-270, 2019 09.
Article in English | MEDLINE | ID: mdl-31462781

ABSTRACT

Body-axis elongation constitutes a key step in animal development, laying out the final form of the entire animal. It relies on the interplay between intrinsic forces generated by molecular motors1-3, extrinsic forces exerted by adjacent cells4-7 and mechanical resistance forces due to tissue elasticity or friction8-10. Understanding how mechanical forces influence morphogenesis at the cellular and molecular level remains a challenge1. Recent work has outlined how small incremental steps power cell-autonomous epithelial shape changes1-3, which suggests the existence of specific mechanisms that stabilize cell shapes and counteract cell elasticity. Beyond the twofold stage, embryonic elongation in Caenorhabditis elegans is dependent on both muscle activity7 and the epidermis; the tension generated by muscle activity triggers a mechanotransduction pathway in the epidermis that promotes axis elongation7. Here we identify a network that stabilizes cell shapes in C. elegans embryos at a stage that involves non-autonomous mechanical interactions between epithelia and contractile cells. We searched for factors genetically or molecularly interacting with the p21-activating kinase homologue PAK-1 and acting in this pathway, thereby identifying the α-spectrin SPC-1. Combined absence of PAK-1 and SPC-1 induced complete axis retraction, owing to defective epidermal actin stress fibre. Modelling predicts that a mechanical viscoplastic deformation process can account for embryo shape stabilization. Molecular analysis suggests that the cellular basis for viscoplasticity originates from progressive shortening of epidermal microfilaments that are induced by muscle contractions relayed by actin-severing proteins and from formin homology 2 domain-containing protein 1 (FHOD-1) formin bundling. Our work thus identifies an essential molecular lock acting in a developmental ratchet-like process.


Subject(s)
Actins/metabolism , Body Patterning/physiology , Caenorhabditis elegans/embryology , Actin Cytoskeleton/metabolism , Animals , Caenorhabditis elegans/cytology , Embryo, Nonmammalian , Epidermal Cells/cytology
20.
Nat Commun ; 10(1): 2160, 2019 May 09.
Article in English | MEDLINE | ID: mdl-31073140

ABSTRACT

Affiliation 4 incorrectly read 'University of the Basque Country (Ikerbasque), University of the Basque Country and Donostia International Physics Center, San Sebastian 20018, Spain.'Also, the affiliations of Ignacio Arganda-Carreras with 'IKERBASQUE, Basque Foundation for Science, Bilbao, 48013, Spain' and 'Donostia International Physics Center (DIPC), San Sebastian, 20018, Spain' were inadvertently omitted.Additionally, the third sentence of the first paragraph of the Results section entitled 'Multicontrast organ-scale imaging with ChroMS microscopy' incorrectly read 'For example, one can choose lambda1 = 850 and lambda2 = 110 nm for optimal two-photon excitation of blue and red chromophores.'. The correct version reads 'lambda2 = 1100 nm' instead of 'lambda2 = 110 nm'. These errors have now been corrected in the PDF and HTML versions of the Article.

SELECTION OF CITATIONS
SEARCH DETAIL
...