Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
FEBS J ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38588274

ABSTRACT

Coenzyme F430 is a nickel-containing tetrapyrrole, serving as the prosthetic group of methyl-coenzyme M reductase in methanogenic and methanotrophic archaea. During coenzyme F430 biosynthesis, the tetrapyrrole macrocycle is reduced by the nitrogenase-like CfbC/D system consisting of the reductase component CfbC and the catalytic component CfbD. Both components are homodimeric proteins, each carrying a [4Fe-4S] cluster. Here, the ligands of the [4Fe-4S] clusters of CfbC2 and CfbD2 were identified revealing an all cysteine ligation of both clusters. Moreover, the midpoint potentials of the [4Fe-4S] clusters were determined to be -256 mV for CfbC2 and -407 mV for CfbD2. These midpoint potentials indicate that the consecutive thermodynamically unfavorable 6 individual "up-hill" electron transfers to the organic moiety of the Ni2+-sirohydrochlorin a,c-diamide substrate require an intricate interplay of ATP-binding, hydrolysis, protein complex formation and release to drive product formation, which is a common theme in nitrogenase-like systems.

2.
Nat Commun ; 10(1): 2074, 2019 05 06.
Article in English | MEDLINE | ID: mdl-31061390

ABSTRACT

Hydride transfers play a crucial role in a multitude of biological redox reactions and are mediated by flavin, deazaflavin or nicotinamide adenine dinucleotide cofactors at standard redox potentials ranging from 0 to -340 mV. 2-Naphthoyl-CoA reductase, a key enzyme of oxygen-independent bacterial naphthalene degradation, uses a low-potential one-electron donor for the two-electron dearomatization of its substrate below the redox limit of known biological hydride transfer processes at E°' = -493 mV. Here we demonstrate by X-ray structural analyses, QM/MM computational studies, and multiple spectroscopy/activity based titrations that highly cooperative electron transfer (n = 3) from a low-potential one-electron (FAD) to a two-electron (FMN) transferring flavin cofactor is the key to overcome the resonance stabilized aromatic system by hydride transfer in a highly hydrophobic pocket. The results evidence how the protein environment inversely functionalizes two flavins to switch from low-potential one-electron to hydride transfer at the thermodynamic limit of flavin redox chemistry.


Subject(s)
Bacterial Proteins/chemistry , Coenzymes/chemistry , Flavins/chemistry , Models, Molecular , Oxidoreductases/chemistry , Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Coenzymes/metabolism , Computer Simulation , Crystallography, X-Ray , Electron Transport , Flavins/metabolism , Naphthalenes/chemistry , Naphthalenes/metabolism , Oxidoreductases/isolation & purification , Oxidoreductases/metabolism , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Spectrum Analysis
3.
J Am Chem Soc ; 141(14): 5753-5765, 2019 04 10.
Article in English | MEDLINE | ID: mdl-30879301

ABSTRACT

Apd1, a cytosolic yeast protein, and Aim32, its counterpart in the mitochondrial matrix, have a C-terminal thioredoxin-like ferredoxin (TLF) domain and a widely divergent N-terminal domain. These proteins are found in bacteria, plants, fungi, and unicellular pathogenic eukaryotes but not in Metazoa. Our chemogenetic experiments demonstrate that the highly conserved cysteine and histidine residues within the C-X8-C-X24-75-H-X-G-G-H motif of the TLF domain of Apd1 and Aim32 proteins are essential for viability of yeast cells upon treatment with the redox mediators gallobenzophenone or pyrogallol, respectively. UV-vis, EPR, and Mössbauer spectroscopy of purified wild-type Apd1 and three His to Cys variants demonstrated that Cys207 and Cys216 are the ligands of the ferric ion, and His255 and His259 are the ligands of the reducible iron ion of the [2Fe-2S]2+/1+ cluster. The [2Fe-2S] center of Apd1 ( Em,7 = -164 ± 5 mV, p Kox1,2 = 7.9 ± 0.1 and 9.7 ± 0.1) differs from both dioxygenase ( Em,7 ≈ -150 mV, p Kox1,2 = 9.8 and 11.5) and cytochrome bc1/ b6 f Rieske clusters ( Em,7 ≈ +300 mV, p Kox1,2= 7.7 and 9.8). Apd1 and its engineered variants represent an unprecedented flexible system for which a stable [2Fe-2S] cluster with two histidine ligands, (two different) single histidine ligands, or only cysteinyl ligands is possible in the same protein fold. Our results define a remarkable example of convergent evolution of the [2Fe-2S] cluster containing proteins with bishistidinyl coordination.


Subject(s)
Ferredoxins/chemistry , Ferredoxins/metabolism , Histidine , Electron Transport , Protein Domains
4.
Environ Microbiol ; 19(9): 3734-3744, 2017 09.
Article in English | MEDLINE | ID: mdl-28752942

ABSTRACT

The degradation of the industrially produced and environmentally relevant phthalate esters by microorganisms is initiated by the hydrolysis to alcohols and phthalate (1,2-dicarboxybenzene). In the absence of oxygen the further degradation of phthalate proceeds via activation to phthaloyl-CoA followed by decarboxylation to benzoyl-CoA. Here, we report on the first purification and characterization of a phthaloyl-CoA decarboxylase (PCD) from the denitrifying Thauera chlorobenzoica. Hexameric PCD belongs to the UbiD-family of (de)carboxylases and contains prenylated FMN (prFMN), K+ and, unlike other UbiD-like enzymes, Fe2+ as cofactors. The latter is suggested to be involved in oxygen-independent electron-transfer during oxidative prFMN maturation. Either oxidation to the Fe3+ -state in air or removal of K+ by desalting resulted in >92% loss of both, prFMN and decarboxylation activity suggesting the presence of an active site prFMN/Fe2+ /K+ -complex in PCD. The PCD-catalysed reaction was essentially irreversible: neither carboxylation of benzoyl-CoA in the presence of 2 M bicarbonate, nor an isotope exchange of phthaloyl-CoA with 13 C-bicarbonate was observed. PCD differs in many aspects from prFMN-containing UbiD-like decarboxylases and serves as a biochemically accessible model for the large number of UbiD-like (de)carboxylases that play key roles in the anaerobic degradation of environmentally relevant aromatic pollutants.


Subject(s)
Acyl Coenzyme A/metabolism , Bacterial Proteins/isolation & purification , Carboxy-Lyases/isolation & purification , Phthalic Acids/metabolism , Thauera/enzymology , Amino Acid Sequence , Anaerobiosis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Catalysis , Electron Transport/physiology , Flavins/chemistry , Iron/chemistry , Oxidation-Reduction , Oxygen/metabolism , Potassium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...