Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Endocrinol (Lausanne) ; 14: 1242588, 2023.
Article in English | MEDLINE | ID: mdl-37711900

ABSTRACT

Introduction: Prolactinomas are the most frequent type of pituitary adenoma encountered in clinical practice. Dopamine agonists (DA) like cabergoline typically provide sign/ symptom control, normalize prolactin levels and decrease tumor size in most patients. DA-resistant prolactinomas are infrequent and can occur in association with some genetic causes like MEN1 and pathogenic germline variants in the AIP gene (AIPvar). Methods: We compared the clinical, radiological, and therapeutic characteristics of AIPvar-related prolactinomas (n=13) with unselected hospital-treated prolactinomas ("unselected", n=41) and genetically-negative, DA-resistant prolactinomas (DA-resistant, n=39). Results: AIPvar-related prolactinomas occurred at a significantly younger age than the unselected or DA-resistant prolactinomas (p<0.01). Males were more common in the AIPvar (75.0%) and DA- resistant (49.7%) versus unselected prolactinomas (9.8%; p<0.001). AIPvar prolactinomas exhibited significantly more frequent invasion than the other groups (p<0.001) and exhibited a trend to larger tumor diameter. The DA-resistant group had significantly higher prolactin levels at diagnosis than the AIPvar group (p<0.001). Maximum DA doses were significantly higher in the AIPvar and DA-resistant groups versus unselected. DA-induced macroadenoma shrinkage (>50%) occurred in 58.3% in the AIPvar group versus 4.2% in the DA-resistant group (p<0.01). Surgery was more frequent in the AIPvar and DA- resistant groups (43.8% and 61.5%, respectively) versus unselected (19.5%: p<0.01). Radiotherapy was used only in AIPvar (18.8%) and DA-resistant (25.6%) groups. Discussion: AIPvar confer an aggressive phenotype in prolactinomas, with invasive tumors occurring at a younger age. These characteristics can help differentiate rare AIPvar related prolactinomas from DA-resistant, genetically-negative tumors.


Subject(s)
Pituitary Neoplasms , Prolactinoma , Humans , Male , Dopamine Agonists , Germ Cells , Pituitary Neoplasms/genetics , Pituitary Neoplasms/therapy , Prolactin , Prolactinoma/drug therapy , Prolactinoma/genetics , Receptors, Aryl Hydrocarbon
2.
J Clin Med ; 11(8)2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35456261

ABSTRACT

Overgrowth due to growth hormone (GH) excess affects approximately 10% of patients with neurofibromatosis type 1 (NF1) and optic pathway glioma (OPG). Our aim is to describe the clinical, biochemical, pathological, and genetic features of GH excess in a retrospective case series of 10 children and adults with NF1 referred to a tertiary care clinical research center. Six children (median age = 4 years, range of 3−5 years), one 14-year-old adolescent, and three adults (median age = 42 years, range of 29−52 years) were diagnosed with NF1 and GH excess. GH excess was confirmed by the failure to suppress GH (<1 ng/mL) on oral glucose tolerance test (OGTT, n = 9) and frequent overnight sampling of GH levels (n = 6). Genetic testing was ascertained through targeted or whole-exome sequencing (n = 9). Five patients (all children) had an OPG without any pituitary abnormality, three patients (one adolescent and two adults) had a pituitary lesion (two tumors, one suggestive hyperplasia) without an OPG, and two patients (one child and one adult) had a pituitary lesion (a pituitary tumor and suggestive hyperplasia, respectively) with a concomitant OPG. The serial overnight sampling of GH levels in six patients revealed abnormal overnight GH profiling. Two adult patients had a voluminous pituitary gland on pituitary imaging. One pituitary tumor from an adolescent patient who harbored a germline heterozygous p.Gln514Pro NF1 variant stained positive for GH and prolactin. One child who harbored a heterozygous truncating variant in exon 46 of NF1 had an OPG that, when compared to normal optic nerves, stained strongly for GPR101, an orphan G protein-coupled receptor causing GH excess in X-linked acrogigantism. We describe a series of patients with GH excess and NF1. Our findings show the variability in patterns of serial overnight GH secretion, somatotroph tumor or hyperplasia in some cases of NF1 and GH excess. Further studies are required to ascertain the link between NF1, GH excess and GPR101, which may aid in the characterization of the molecular underpinning of GH excess in NF1.

3.
Endocr Connect ; 11(1)2022 01 31.
Article in English | MEDLINE | ID: mdl-34939938

ABSTRACT

Objective: Screening studies have established genetic risk profiles for diseases such as multiple endocrine neoplasia type 1 (MEN1) and pheochromocytoma-paraganglioma (PPGL). Founder effects play an important role in the regional/national epidemiology of endocrine cancers, particularly PPGL. Founder effects in the Netherlands have been described for various diseases, some of which established themselves in South Africa due to Dutch emigration. The role of Dutch founder effects in South Africa has not been explored in PPGL. Design: We performed a single-center study in South Africa of the germline genetic causes of isolated/syndromic neuroendocrine tumors. Methods: Next-generation panel, Sanger sequencing and multiplex ligand-dependent probe amplification for endocrine neoplasia risk genes. Results: From a group of 13 patients, we identified 6 with PPGL, 4 with sporadic or familial isolated pituitary adenomas, and 3 with clinical MEN1; genetic variants were identified in 9/13 cases. We identified the Dutch founder exon 3 deletion in SDHB in two apparently unrelated individuals with distinct ethnic backgrounds that had metastatic PPGL. Asymptomatic carriers with this Dutch founder SDHBexon 3 deletion were also identified. Other PPGL patients had variants in SDHB, and SDHD and three MEN1variants were identified among MEN1 and young-onset pituitary adenoma patients. Conclusions: This is the first identification of a Dutch founder effect for PPGL in South Africa. Awareness of the presence of this exon 3 SDHB deletion could promote targeted screening at a local level. Insights into PPGL genetics in South Africa could be achieved by studying existing patient databases for Dutch founder mutations in SDHx genes.

4.
Sci Rep ; 11(1): 19922, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34620959

ABSTRACT

Three new therapies for spinal muscular atrophy (SMA) have been approved by the United States Food and Drug Administration and the European Medicines Agency since 2016. Although these new therapies improve the quality of life of patients who are symptomatic at first treatment, administration before the onset of symptoms is significantly more effective. As a consequence, newborn screening programs have been initiated in several countries. In 2018, we launched a 3-year pilot program to screen newborns for SMA in the Belgian region of Liège. This program was rapidly expanding to all of Southern Belgium, a region of approximately 55,000 births annually. During the pilot program, 136,339 neonates were tested for deletion of exon 7 of SMN1, the most common cause of SMA. Nine SMA cases with homozygous deletion were identified through this screen. Another patient was identified after presenting with symptoms and was shown to be heterozygous for the SMN1 exon 7 deletion and a point mutation on the opposite allele. These ten patients were treated. The pilot program has now successfully transitioned into the official neonatal screening program in Southern Belgium. The lessons learned during implementation of this pilot program are reported.


Subject(s)
Muscular Atrophy, Spinal/epidemiology , Neonatal Screening , Belgium/epidemiology , Disease Management , Disease Susceptibility , Genetic Predisposition to Disease , Humans , Incidence , Infant, Newborn , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/etiology , Muscular Atrophy, Spinal/therapy , National Health Programs , Outcome Assessment, Health Care , Public Health Surveillance , Referral and Consultation , Workflow
6.
Sci Rep ; 11(1): 3011, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33542429

ABSTRACT

Duchenne Muscular Dystrophy (DMD) is a lethal progressive muscle-wasting disease. New treatment strategies relying on DMD gene exon-skipping therapy have recently been approved and about 30% of patients could be amenable to exon 51, 53 or 45 skipping. We evaluated the spectrum of deletions reported in DMD registries, and designed a method to screen newborns and identify DMD deletions amenable to exon 51, 53 and 45 skipping. We developed a multiplex qPCR assay identifying hemi(homo)-zygotic deletions of the flanking exons of these therapeutic targets in DMD exons (i.e. exons 44, 46, 50, 52 and 54). We conducted an evaluation of our new method in 51 male patients with a DMD phenotype, 50 female carriers of a DMD deletion and 19 controls. Studies were performed on dried blood spots with patient's consent. We analyzed qPCR amplification curves of controls, carriers, and DMD patients to discern the presence or the absence of the target exons. Analysis of the exons flanking the exon-skipping targets permitted the identification of patients that could benefit from exon-skipping. All samples were correctly genotyped, with either presence or absence of amplification of the target exon. This proof-of-concept study demonstrates that this new assay is a highly sensitive method to identify DMD patients carrying deletions that are rescuable by exon-skipping treatment. The method is easily scalable to population-based screening. This targeted screening approach could address the new management paradigm in DMD, and could help to optimize the beneficial therapeutic effect of DMD therapies by permitting pre-symptomatic care.


Subject(s)
Dystrophin/genetics , Genetic Therapy/trends , Muscular Dystrophy, Duchenne/genetics , Neonatal Screening , Dried Blood Spot Testing , Exons/genetics , Female , Genotype , Humans , Infant, Newborn , Male , Muscular Dystrophy, Duchenne/pathology , Muscular Dystrophy, Duchenne/therapy , Oligonucleotides, Antisense , Sequence Deletion/genetics
7.
Horm Metab Res ; 52(11): 784-787, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32521546

ABSTRACT

Most pancreatic neuroendocrine neoplasms (pNEN) occur sporadically but they can also occur as part of multiple endocrine neoplasia type 1 (MEN1). MAX was originally described as an inherited pheochromocytoma-paraganglioma risk gene, but also has recently been implicated in pituitary tumorigenesis. Here we describe the first case of a pNEN associated with an inherited MAX gene deletion in a family with endocrine tumors. The patient was a male carrier of an intragenic exon 3 deletion inherited from his father who had recurrent pheochromocytomas and a macroprolactinoma. The patient underwent screening and hormonal studies but no pheochromocytoma-paraganglioma, pituitary or renal tumors were identified. However, abdominal magnetic resonance imaging (MRI) identified a 1 cm lesion in body of the pancreas. The lesion was hyperintense on T2-weighted signal, and there was hyperfixation of the tumor on 68Ga-DOTANOC PET-CT images. No biochemical evidence of pancreatic hormone excess was identified. Following a guided biopsy, a pathological diagnosis of a low grade pNEN was made and immunohistochemistry showed loss of MAX nuclear staining. Genetic analysis of the tumor tissue indicated copy number neutral loss of heterozygosity consistent with uniparental disomy. This is the first reported case of a MAX deletion associated pNEN and strengthens the argument that MAX may represent an inheritable multiple endocrine neoplasia risk gene. Further analysis of germline and somatic MAX mutations/deletions in large cohorts of unexplained NEN cases could help clarify the potential role of MAX in NEN etiology.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Gene Deletion , Genetic Predisposition to Disease , Neuroendocrine Tumors/pathology , Pancreatic Neoplasms/pathology , Adult , Female , Genetic Testing , Germ-Line Mutation , Humans , Male , Middle Aged , Neuroendocrine Tumors/genetics , Pancreatic Neoplasms/genetics , Pedigree , Prognosis
9.
Ann Endocrinol (Paris) ; 78(2): 123-130, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28483363

ABSTRACT

AIP mutations are rare in sporadic acromegaly but they are seen at a higher frequency among certain specific populations of pituitary adenoma patients (pituitary gigantism cases, familial isolated pituitary adenoma (FIPA) kindreds, and patients with macroadenomas who are diagnosed ≤30 years). AIP mutations are most prevalent in patients with pituitary gigantism (29% of this group were found to have mutations in AIP gene). These data support targeted genetic screening for AIP mutations/deletions in these groups of pituitary adenoma patients. Earlier diagnosis of AIP-related acromegaly-gigantism cases enables timely clinical evaluation and treatment, thereby improving outcomes in terms of excessive linear growth and acromegaly comorbidities.


Subject(s)
Gigantism/genetics , Intracellular Signaling Peptides and Proteins/genetics , Acromegaly/genetics , Genetic Testing , Humans , Mutation , Pedigree , Pituitary Neoplasms/genetics , Pituitary Neoplasms/pathology
10.
Ann Endocrinol (Paris) ; 78(2): 131-136, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28457479

ABSTRACT

X-linked acrogigantism (XLAG) is a new, pediatric-onset genetic syndrome, due to Xq26.3 microduplications encompassing the GPR101 gene. XLAG has a remarkably distinct phenotype with disease onset occurring before the age of 5 in all cases described to date, which is significantly younger than in other forms of pituitary gigantism. These patients have mixed GH and prolactin positive adenomas and/or mixed-cell hyperplasia and highly elevated levels of GH/IGF-1 and prolactin. Given their particularly young age of onset, the significant GH hypersecretion can lead to a phenotype of severe gigantism with very advanced age-specific height Z-scores. If not adequately treated in childhood, this condition results in extreme final adult height. XLAG has a clinical course that is highly similar to some of the tallest people with gigantism in history.


Subject(s)
Gigantism/genetics , Age of Onset , Female , Gene Duplication , Gigantism/history , Gigantism/pathology , History, 19th Century , History, 20th Century , Humans , Male , Pituitary Hormones/blood , Prolactinoma/genetics , Prolactinoma/pathology , Receptors, G-Protein-Coupled/genetics
SELECTION OF CITATIONS
SEARCH DETAIL