Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 120
1.
J Biomech ; 168: 112114, 2024 May.
Article En | MEDLINE | ID: mdl-38677030

The triceps surae muscle, composed of the gastrocnemius and soleus muscles, plays a major role in forward propulsion during walking. By generating positive ankle power during the push-off phase, these muscles produce the propulsive force required for forward progression. This study aimed to test the hypothesis that applying functional electrical stimulation (FES) to these muscles (soleus, gastrocnemius or the combination of the two) during the push-off phase would increase the ankle power generation and, consequently, enhance forward propulsion during walking in able-bodied adults. Fifteen young adults walked at their self-selected speed under four conditions: no stimulation, with bilateral stimulation of the soleus, gastrocnemius, and both muscles simultaneously. Muscles were stimulated just below the discomfort threshold during push-off, i.e., from heel-off to toe-off. FES significantly increased ankle power (+22 to 28 % depending on conditions), propulsive force (+15 to 18 %) and forward progression parameters such as walking speed (+14 to 20 %). Furthermore, walking speed was significantly higher (+5%) for combined soleus and gastrocnemius stimulation compared with gastrocnemius stimulation alone, with no further effect on other gait parameters. In conclusion, our results demonstrate that applying FES to the gastrocnemius and soleus, separately or simultaneously during the push-off phase, enhanced ankle power generation and, consequently, forward propulsion during walking in able-bodied adults. Combined stimulation of the soleus and gastrocnemius provided the greatest walking speed enhancement, without affecting other propulsion parameters. These findings could be useful for designing FES-based solutions for improving gait in healthy people with propulsion impairment, such as the elderly.


Muscle, Skeletal , Walking , Humans , Muscle, Skeletal/physiology , Walking/physiology , Male , Adult , Young Adult , Female , Gait/physiology , Electric Stimulation/methods , Awards and Prizes , Biomechanical Phenomena , Ankle Joint/physiology , Ankle/physiology
2.
Foot (Edinb) ; 59: 102093, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38520781

BACKGROUND: Flatfoot can be associated with foot pathologies and treated conservatively with foot orthoses to correct arch collapse and alleviate painful symptoms. Recently, 3D printing has become more popular and is widely used for medical device manufacturing, such as orthoses. This study aims at quantifying the effect of generic 3D-printed foot orthoses on flatfoot arch correction under different static loading conditions. METHODS: Participants with normal and flatfeet were recruited for this cross-sectional study. Clinical evaluation included arch height, foot posture index, and Beighton flexibility score. Surface imaging was performed in different loading conditions: 1) 0% when sitting, 2) 50% when standing on both feet, and 3) 125% when standing on one foot with a weighted vest. For flatfoot participants, three configurations were tested: without an orthosis, with a soft generic 3D printed orthosis, and with a rigid 3D printed orthosis. Arch heights and medial arch angles were calculated and compared for the different loading conditions and with or without orthoses. The differences between groups, with and without orthoses, were analyzed with Kruskal-Wallis tests, and a p < 0.05 was considered significant. RESULTS: A total of 10 normal feet and 10 flatfeet were analyzed. The 3D printed orthosis significantly increased arch height in all loading conditions, compared to flatfeet without orthosis. Wearing an orthosis reduced the medial arch angle, although not significantly. Our technique was found to have good to excellent intra and interclass correlation coefficients. CONCLUSIONS: Generic 3D printed orthoses corrected arch collapse in static loading conditions, including 125% body weight to simulate functional tasks like walking. Our protocol was found to be reliable and easier to implement in a clinical setting compared to previously reported methods. LEVEL OF EVIDENCE: II.

3.
Ann Biomed Eng ; 52(5): 1240-1254, 2024 May.
Article En | MEDLINE | ID: mdl-38376768

The rotator cuff is prone to injury, remarkably so for manual wheelchair users. To understand its pathomechanisms, finite element models incorporating three-dimensional activated muscles are needed to predict soft tissue strains during given tasks. This study aimed to develop such a model to understand pathomechanisms associated with wheelchair propulsion. We developed an active muscle model associating a passive fiber-reinforced isotropic matrix with an activation law linking calcium ion concentration to tissue tension. This model was first evaluated against known physiological muscle behavior; then used to activate the rotator cuff during a wheelchair propulsion cycle. Here, experimental kinematics and electromyography data was used to drive a shoulder finite element model. Finally, we evaluated the importance of muscle activation by comparing the results of activated and non-activated rotator cuff muscles during both propulsion and isometric contractions. Qualitatively, the muscle constitutive law reasonably reproduced the classical Hill model force-length curve and the behavior of a transversally loaded muscle. During wheelchair propulsion, the deformation and fiber stretch of the supraspinatus muscle-tendon unit pointed towards the possibility for this tendon to develop tendinosis due to the multiaxial loading imposed by the kinematics of propulsion. Finally, differences in local stretch and positions of the lines of action between activated and non-activated models were only observed at activation levels higher than 30%. Our novel finite element model with active muscles is a promising tool for understanding the pathomechanisms of the rotator cuff for various dynamic tasks, especially those with high muscle activation levels.


Shoulder Joint , Wheelchairs , Shoulder/physiology , Rotator Cuff , Finite Element Analysis , Biomechanical Phenomena
4.
Am J Ind Med ; 67(4): 304-320, 2024 Apr.
Article En | MEDLINE | ID: mdl-38345435

BACKGROUND: To limit exposures to occupational heat stress, leading occupational health and safety organizations recommend work-rest regimens to prevent core temperature from exceeding 38°C or increasing by ≥1°C. This scoping review aims to map existing knowledge of the effects of work-rest regimens in hot environments and to propose recommendations for future research based on identified gaps. METHODS: We performed a search of 10 databases to retrieve studies focused on work-rest regimens under hot conditions. RESULTS: Forty-nine articles were included, of which 35 were experimental studies. Most studies were conducted in laboratory settings, in North America (71%), on healthy young adults, with 94% of the 642 participants being males. Most studies (66%) employed a protocol duration ≤240 min (222 ± 162 min, range: 37-660) and the time-weighted average wet-bulb globe temperature was 27 ± 4°C (range: 18-34). The work-rest regimens implemented were those proposed by the American Conference of Governmental and Industrial Hygiene (20%), National Institute of Occupational Safety and Health (11%), or the Australian Army (3%). The remaining studies (66%) did not mention how the work-rest regimens were derived. Most studies (89%) focused on physical tasks only. Most studies (94%) reported core temperature, whereas only 22% reported physical and/or mental performance outcomes, respectively. Of the 35 experimental studies included, 77% indicated that core temperature exceeded 38°C. CONCLUSIONS: Although work-rest regimens are widely used, few studies have investigated their physiological effectiveness. These studies were mainly short in duration, involved mostly healthy young males, and rarely considered the effect of work-rest regimens beyond heat strain during physical exertion.


Heat Stress Disorders , Occupational Exposure , Occupational Stress , Male , Young Adult , Humans , Female , Hot Temperature , Australia , Body Temperature/physiology , Physical Exertion/physiology , Heat Stress Disorders/prevention & control
5.
Clin Biomech (Bristol, Avon) ; 111: 106167, 2024 01.
Article En | MEDLINE | ID: mdl-38184895

BACKGROUND: Cross-slopes are often encountered by manual wheelchair users propelling within an urban setting. While propulsion over cross-slopes is more difficult than on level surfaces, little is known about how the users counter the downhill turning tendency of the wheelchair over cross-slopes. This study aimed to identify the adaptations of the manual wheelchair users to the presence of cross-slopes and examine how these might impact shoulder injury. METHODS: Nine manual wheelchair users propelled themselves across a cross-slope and over a level surface. The trunk and glenohumeral joint kinematics, as well as the handrim contact tangential force were compared between both conditions for the uphill and downhill limbs. FINDINGS: The uphill arm technique used to counter the downhill turning tendency varied greatly in terms of potential injury risk and efficiency between participants. Trunk flexion increased the turning tendency of the manual wheelchair, yet only one participant decreased his flexion when rolling over the cross-slope. Various potential pathomecanisms related to the trunk lateral flexion and the glenohumeral kinematics over a cross-slope were identified. INTERPRETATION: Both the uphill arm technique and trunk kinematics are important to propel over a cross-slope both efficiently and safely. Accordingly, tips about posture and kinematics are needed to teach this skill to manual wheelchair users. Additionally, as wheelchair positioning seems to influence the cross-slope skill, more research is needed to explore the impact of positioning devices (e.g., lateral supports) and wheelchair modifications (e.g., power assist wheels, handrim projections) on this skill.


Shoulder Joint , Wheelchairs , Humans , Biomechanical Phenomena , Extremities , Posture
6.
Ergonomics ; 67(3): 275-287, 2024 Mar.
Article En | MEDLINE | ID: mdl-37264800

Muscle fatigue is a primary risk factor in developing musculoskeletal disorders, which affect up to 93% musicians, especially violinists. Devices providing dynamic assistive support (DAS) to the violin-holding arm can lessen fatigue. The objective was to assess DAS effects on electromyography median frequency and joint kinematics during a fatiguing violin-playing task. Fifteen university-level and professional violinists were equipped with electromyography sensors and reflective markers to record upper-body muscle activity and kinematics. They played G scales with and without DAS until exhaustion. Paired t-tests assessed DAS effects on delta (final-initial) electromyography median frequencies and joint kinematics. DAS prevented the median frequency decrease of left supraspinatus, superior trapezius, and right medial deltoid, and increases in trunk rotation, left-wrist abduction, and right arm-elevation plane. DAS effects on kinematics were marginal due to retention of musical performance despite fatigue. However, DAS reduced fatigue of several muscles, which is promising for injury prevention.Practitioner summary: Violinists are greatly affected by musculoskeletal disorders. Effects of a mobility assistive device on muscle fatigue during violin playing was investigated. The assistive technology slowed down the development of fatigue for three neck/shoulder muscles, making assisted musical performance a promising avenue to prevent violinists' injuries.


Muscle Fatigue , Musculoskeletal Diseases , Humans , Deltoid Muscle , Electromyography , Neck Muscles
7.
Sensors (Basel) ; 23(21)2023 Oct 24.
Article En | MEDLINE | ID: mdl-37960383

BACKGROUND: This systematic review aimed to provide a comprehensive overview of the effects of functional electrical stimulation (FES) on gait characteristics in healthy individuals. METHODS: Six electronic databases (PubMed, Embase, Epistemonikos, PEDro, COCHRANE Library, and Scopus) were searched for studies evaluating the effects of FES on spatiotemporal, kinematic, and kinetic gait parameters in healthy individuals. Two examiners evaluated the eligibility and quality of the included studies using the PEDro scale. RESULTS: A total of 15 studies met the inclusion criteria. The findings from the literature reveal that FES can be used to modify lower-limb joint kinematics, i.e., to increase or reduce the range of motion of the hip, knee, and ankle joints. In addition, FES can be used to alter kinetics parameters, including ground reaction forces, center of pressure trajectory, or knee joint reaction force. As a consequence of these kinetics and kinematics changes, FES can lead to changes in spatiotemporal gait parameters, such as gait speed, step cadence, and stance duration. CONCLUSIONS: The findings of this review improve our understanding of the effects of FES on gait biomechanics in healthy individuals and highlight the potential of this technology as a training or assistive solution for improving gait performance in this population.


Gait , Walking , Humans , Walking/physiology , Gait/physiology , Knee Joint/physiology , Knee , Lower Extremity/physiology , Biomechanical Phenomena
8.
Sensors (Basel) ; 23(21)2023 Oct 29.
Article En | MEDLINE | ID: mdl-37960500

The Lokomat provides task-oriented therapy for patients with gait disorders. This robotic technology drives the lower limbs in the sagittal plane. However, normative gait also involves motions in the coronal and transverse planes. This study aimed to compare the Lokomat with Treadmill gait through three-dimensional (3D)-joint kinematics and inter-joint coordination. Lower limb kinematics was recorded in 18 healthy participants who walked at 3 km/h on a Treadmill or in a Lokomat with nine combinations of Guidance (30%, 50%, 70%) and bodyweight support (30%, 50%, 70%). Compared to the Treadmill, the Lokomat altered pelvic rotation, decreased pelvis obliquity and hip adduction, and increased ankle rotation. Moreover, the Lokomat resulted in significantly slower velocity at the hip, knee, and ankle flexion compared to the treadmill condition. Moderate to strong correlations were observed between the Treadmill and Lokomat conditions in terms of inter-joint coordination between hip-knee (r = 0.67-0.91), hip-ankle (r = 0.66-0.85), and knee-ankle (r = 0.90-0.95). This study showed that some gait determinants, such as pelvis obliquity, rotation, and hip adduction, are altered when walking with Lokomat in comparison to a Treadmill. Kinematic deviations induced by the Lokomat were most prominent at high levels of bodyweight support. Interestingly, different levels of Guidance did not affect gait kinematics. The present results can help therapists to adequately select settings during Lokomat therapy.


Robotic Surgical Procedures , Humans , Biomechanical Phenomena , Gait , Walking , Lower Extremity , Knee Joint , Body Weight
9.
Sci Rep ; 13(1): 15163, 2023 09 13.
Article En | MEDLINE | ID: mdl-37704661

During fatiguing piano tasks, muscle fatigue develops differently between expert pianists. Differences in neuromotor strategies employed could explain a slower rate of fatigue development. The objective was to compare muscle activation and kinematic variabilities between ShortDuration (i.e., pianists with less endurance) and LongDuration groups. Results from 49 pianists showed that EMG activation variability of most shoulder and upper limbs muscles was greater for the ShortDuration group with time during two piano fatiguing tasks, namely Digital and Chord tasks. Segment acceleration variability, assessed using inertial measurement units, was also greater with time for the ShortDuration group at the right arm during the Digital task, and at the thorax and head during the Chord task. Finally, thorax lateroflexion variability increased with time for the LongDuration group (but not the ShortDuration group) during the Digital task. During the Chord task, wrist flexion variability was higher for the LongDuration group compared to the ShortDuration group. These results showed a direct effect of time on the pianists' acceleration variability and EMG activation variability. In contrast, a protective effect of fatigue development could be attributed to kinematic variability. Results also suggest a higher risk of injury among pianists in the ShortDuration group.


Upper Extremity , Wrist , Acceleration , Muscle Fatigue , Muscles
10.
Hum Mov Sci ; 90: 103110, 2023 Aug.
Article En | MEDLINE | ID: mdl-37295318

Repetitive movements are considered a risk factor for developing practice-related musculoskeletal disorders. Intra-participant kinematic variability might help musicians reduce the risk of injury during repetitive tasks. No research has studied the effects of proximal motion (i.e., trunk and shoulder movement) on upper-limb movement variability in pianists. The first objective was to determine the effect of proximal movement strategies and performance tempo on both intra-participant joint angle variability of upper-limb joints and endpoint variability. The second objective was to compare joint angle variability between pianist's upper-limb joints. As secondary objectives, we assessed the relationship between intra-participant joint angle variability and task range of motion (ROM) and documented inter-participant joint angle variability. The upper body kinematics of 9 expert pianists were recorded using an optoelectronic system. Participants continuously performed two right-hand chords (lateral leap motions) while changing movements based on trunk motion (with and without) and shoulder motion (counter-clockwise, back-and-forth, and clockwise) at two tempi (slow and fast). Trunk and shoulder movement strategies collectively influenced variability at the shoulder, elbow and, to a lesser extent, the wrist. Slow tempi led to greater variability at wrist and elbow flexion/extension compared to fast tempi. Endpoint variability was influenced only along the anteroposterior axis. When the trunk was static, the shoulder had the lowest joint angle variability. When trunk motion was used, elbow and shoulder variability increased, and became comparable to wrist variability. ROM was correlated with intra-participant joint angle variability, suggesting that increased task ROM might result in increased movement variability during practice. Inter-participant variability was approximately six times greater than intra-participant variability. Pianists should consider incorporating trunk motion and a variety of shoulder movements as performance strategies while performing leap motions at the piano, as they might reduce exposure to risks of injury.


Movement , Upper Extremity , Humans , Shoulder , Elbow , Wrist , Biomechanical Phenomena
11.
J Anat ; 243(4): 674-683, 2023 10.
Article En | MEDLINE | ID: mdl-37248724

Iliofemoral ligament strains have been assessed in a circumscribed portion, limiting the information regarding the strains in the proximal, mid and distal portions. The purpose of this study is to describe the longitudinal and transversal strain within the proximal, mid and distal portions of the lateral and medial bands of the iliofemoral ligament. Ten fresh cadaveric specimens were assessed. The iliofemoral ligaments were divided into medial and lateral bands. Hemispherical beads (2.6 mm) were placed on the lateral and medial borders of each band. Four positions were assessed: abduction, extension, internal and external rotations combined with extension. The hemispherical beads were scanned at the end range of motion using a laser scanner. The three-dimensional position of each bead was used to estimate longitudinal and transversal strains. A three-factor ANOVA was used to compare movements, borders, and portions within each ligament for longitudinal strains. A one-way ANOVA was used to compare transversal strains between portions. This technique showed mean reliability (ICC: 2, 1) of 0.90 ± 0.06. The external rotation showed the highest strains in both ligaments (p < 0.05). Abduction showed a significant difference between the lateral and medial borders in both bands (p = 0.001). Eight movement-border combinations showed a significant difference between proximal, medial, and lateral portions (p < 0.005). According to our results, there is a clear effect of portions (proximal, mid and distal) within the ligament and movements. Abduction shows the lowest strains longitudinally but the largest strains transversally. Although we do not know the impact of this phenomenon, future studies should assess the strains following hip arthroscopies. The latter might improve the impact of this procedure on hip biomechanics. Lastly, the iliofemoral ligament should be assessed using a segmental approach rather than as a complete unit.


Hip Joint , Ligaments, Articular , Humans , Reproducibility of Results , Movement , Range of Motion, Articular , Biomechanical Phenomena , Cadaver
12.
Comput Biol Med ; 155: 106376, 2023 03.
Article En | MEDLINE | ID: mdl-36796183

BACKGROUND: Additive manufacturing enables to print patient-specific Foot Orthotics (FOs). In FOs featuring lattice structures, the variation of the cell's dimensions provides a locally variable stiffness to meet the therapeutic needs of each patient. In an optimization problem, however, using explicit Finite Element (FE) simulation of lattice FOs with converged 3D elements is computationally prohibitive. This paper presents a framework to efficiently optimize the cell's dimensions of a honeycomb lattice FO for flat foot condition. METHODS: We built a surrogate based on shell elements whose mechanical properties were computed by the numerical homogenization technique. The model was submitted to a static pressure distribution of a flat foot and it predicted the displacement field for a given set of geometrical parameters of the honeycomb FO. This FE simulation was considered as a black-box and a derivative-free optimization solver was employed. The cost function was defined based on the difference between the predicted displacement by the model against a therapeutic target displacement. RESULTS: Using the homogenized model as a surrogate significantly accelerated the stiffness optimization of the lattice FO. The homogenized model could predict the displacement field 78 times faster than the explicit model. When 2000 evaluations were required in an optimization problem, the computational time was reduced from 34 days to 10 hours using the homogenized model rather than explicit model. Moreover, in the homogenized model, there was no need to re-create and re-mesh the insole's geometry in each iteration of the optimization. It was only required to update the effective properties. CONCLUSION: The presented homogenized model can be used as a surrogate within an optimization framework to customize cell's dimensions of honeycomb lattice FO in a computationally efficient manner.


Flatfoot , Medicine , Humans , Foot , Computer Simulation , Algorithms , Finite Element Analysis
13.
Clin Biomech (Bristol, Avon) ; 102: 105903, 2023 02.
Article En | MEDLINE | ID: mdl-36753797

BACKGROUND: Flexion-abduction-external-rotation (FABER) test is one of the most used tests during the clinical assessment of the hip joint. The limited range of motions reached could be due to iliofemoral ligament tightness, but no study has assessed capsular ligament strain during this test. The main objective of this study is to report strains within the iliofemoral ligament during the FABER test using a segmental approach. METHODS: 9 hips were harvested, and all muscles were removed. Hemispherical markers (∅ 2.6 mm) were glued on the lateral and medial borders of both the medial and lateral iliofemoral bands, separating each border into proximal, mid, and distal portions. The lower limb was placed in a FABER test position. A laser scanner allowed to digitize the 3D surface of the capsule. A Kruskal-Wallis test was performed to assess the effect of ligaments, borders, and portions. FINDINGS: The lateral band of the iliofemoral ligament showed greater strains (14.6 ± 11.4%) compared to the medial band (-8.7 ± 14.2%) (p < 0.001). The greatest strains were observed in the distal portion of the lateral border of the lateral band (51.1 ± 21.5%). A decrease in strain was observed in the mid-portion of the medial border of the medial iliofemoral ligament (-27.9 ± 8.9%). INTERPRETATION: The FABER test is used to assess pain at the hip. Our results show that the limited range of motion at the hip during this test might be caused by increased strains in the lateral band. These results demonstrate that a limitation of joint range of motion during the FABER could be due to an excessive tension of the lateral band of the iliofemoral ligament.


Hip Joint , Hip , Humans , Cadaver , Hip Joint/physiology , Range of Motion, Articular/physiology , Ligaments, Articular/physiology , Biomechanical Phenomena
14.
Sports Biomech ; 22(2): 316-333, 2023 Feb.
Article En | MEDLINE | ID: mdl-35319349

In acrobatic sports, twisting fast before piking allows athletes to enlarge their scoring potential. Since planning the arm and hip movements to twist fast is unintuitive, optimal control appears as a powerful and risk-free tool. To our knowledge, predictive simulations of human motion did not include self-collision avoidance constraints resulting potentially in unrealistic solutions. Our objective was to generate innovative and realistic twisting techniques for forward somersaults ending in pike position by solving an optimal control problem including non-collision constraints. Optimal techniques for one, two, or three twists before piking were generated by minimising the duration of the twisting and piking phases. The model was composed of five segments with one degree of freedom at the chest and two at the hips and shoulders. We explored local minima using a multi-start approach. Solutions were further analysed to assess the impact of non-collision constraints, the segments' contribution to twist creation, and their stability. For each desired number of twists, one relevant solution was chosen. Optimisation showed that trampolinists could attempt new acrobatics: forward triple twisting somersault ending in pike position. This research also shows that non-collision constraints strongly modify the optimal techniques without impairing significantly their performance.


Arm , Sports , Humans , Models, Biological , Biomechanical Phenomena , Computer Simulation
15.
Sports Biomech ; 22(2): 300-315, 2023 Feb.
Article En | MEDLINE | ID: mdl-35670189

When estimating full-body motion from experimental data, inverse kinematics followed by inverse dynamics does not guarantee dynamical consistency of the resulting motion, especially in movements where the trajectory depends heavily on the initial state, such as in free-fall. Our objective was to estimate dynamically consistent joint kinematics and kinetics of complex aerial movements. A 42-degrees-of-freedom model with 95 markers was personalised for five elite trampoline athletes performing various backward and forward twisting somersaults. Using dynamic optimisation, our algorithm estimated joint angles, velocities and torques by tracking the recorded marker positions. Kinematics, kinetics, angular and linear momenta, and marker tracking difference were compared to results of an Extended Kalman Filter (EKF) followed by inverse dynamics. Angular momentum and horizontal linear momentum were conserved throughout the estimated motion, as per free-fall dynamics. Marker tracking difference went from 17 ± 4 mm for the EKF to 36 ± 11 mm with dynamic optimisation tracking the experimental markers, and to 49 ± 9 mm with dynamic optimisation tracking EKF joint angles. Joint angles from the dynamic optimisations were similar to those of the EKF, and joint torques were smoother. This approach satisfies the dynamics of complex aerial rigid-body movements while remaining close to the experimental 3D marker dataset.


Models, Biological , Movement , Humans , Biomechanical Phenomena , Motion , Kinetics
16.
Hum Factors ; 65(5): 923-941, 2023 08.
Article En | MEDLINE | ID: mdl-34348514

OBJECTIVE: Assessing violinists' motor and musical performance adaptations to dynamic assistive support (DAS) provided by a passive device, using a force-field adaptation paradigm. BACKGROUND: Up to 93% of instrumentalists are affected by musculoskeletal injuries and particularly violinists. The repetitive nature of their work may lead to muscle fatigue, an injury risk factor. DAS has been used in occupational settings to minimize muscle activations and limit fatigue accumulation. DAS may however affect motor and musical performance. METHOD: Fifteen expert violinists were equipped with reflective markers and surface and intramuscular electromyography (EMG) sensors. Movements, muscle activations, and sound were recorded while participants completed three experimental conditions for which they continuously played a 13-s musical excerpt: Control (no DAS), Adaptation (DAS), and Washout (no DAS). DAS was applied at the left elbow (violin-holding side). Conditions were repeated 1 week later. Participants later listened to their own audio recordings playing with and without DAS and blindly assessed their performances. Linear mixed models were used to compare DAS and no-DAS conditions' kinematic, EMG, and musical performance data. RESULTS: DAS perturbed user kinematics but reduced mean activations of left medial deltoid and superior trapezius. Joint kinematic and muscle activation patterns between DAS and no DAS conditions however remained similar. Musical performance was unchanged with DAS. CONCLUSION: Though DAS modified violinists' upper-limb configurations, resulting kinematics were not detrimental to musical performance. Reduced muscle activations with DAS could contribute to lessening muscle fatigue. APPLICATION: Although its effect on muscle fatigue should be further investigated, DAS might be useful in preventing violinists' injuries.


Music , Humans , Biomechanical Phenomena , Electromyography , Muscle, Skeletal/physiology , Upper Extremity , Muscle Fatigue
17.
Article En | MEDLINE | ID: mdl-38170614

BACKGROUND: Foot type, especially cavus foot, is associated with foot and ankle soccer injuries, such as ankle sprains, ankle instability, and foot and ankle lateral injuries. The aim of this study was to identify risk factors for foot and ankle injuries among soccer players. METHODS: Male and female soccer players, from beginners to semiprofessionals, aged between 10 and 40 years were enrolled in this cross-sectional study. Players filled in questionnaires about their training and injury history. Clinical measurements included foot length, Foot Posture Index-6, and arch height flexibility. Each variable was dichotomized: age (<18 years versus ≥18 years), level of play (AA and below versus AAA and above), foot type (cavus or not), and injury. Injury occurrence was analyzed using χ2 tests between each group of variables, and significance was set at P < .05. RESULTS: A total of 277 players, including 81 females, volunteered; 147 were younger than 18 years and 180 were AA level or below. Cavus foot prevalence was 30%. In the cavus foot group, 51.8% of players had reached at least an AAA level compared with 27.8% in the normal-arched group (P < .001 [χ2]). Injuries were associated with a cavus foot type (P < .01 [χ2]) and with sex, age, or highest level played (P < .001 [χ2]). CONCLUSIONS: This study identified a high prevalence of cavus foot among soccer players of all ages, with an increased prevalence among higher-level players. The injury risk factors were female sex, older age, playing at a higher level, and cavus feet.


Ankle Injuries , Soccer , Talipes Cavus , Humans , Male , Female , Child , Adolescent , Young Adult , Adult , Prevalence , Cross-Sectional Studies , Ankle Injuries/epidemiology , Risk Factors
18.
Sensors (Basel) ; 22(20)2022 Oct 20.
Article En | MEDLINE | ID: mdl-36298357

Muscle fatigue is a risk factor for developing musculoskeletal disorders during low-load repetitive tasks. The objective of this study was to assess the effect of muscle fatigue on power spectrum changes of upper limb and trunk acceleration and angular velocity during a repetitive pointing task (RPT) and a work task. Twenty-four participants equipped with 11 inertial measurement units, that include acceleration and gyroscope sensors, performed a tea bag filling work task before and immediately after a fatiguing RPT. During the RPT, the power spectrum of acceleration and angular velocity increased in the movement and in 6-12 Hz frequency bands for sensors positioned on the head, sternum, and pelvis. Alternatively, for the sensor positioned on the hand, the power spectrum of acceleration and angular velocity decreased in the movement frequency band. During the work task, following the performance of the fatiguing RPT, the power spectrum of acceleration and angular velocity increased in the movement frequency band for sensors positioned on the head, sternum, pelvis, and arm. Interestingly, for both the RPT and work task, Cohens' d effect sizes were systematically larger for results extracted from angular velocity than acceleration. Although fatigue-related changes were task-specific between the RPT and the work task, fatigue systematically increased the power spectrum in the movement frequency band for the head, sternum, pelvis, which highlights the relevance of this indicator for assessing fatigue. Angular velocity may be more efficient to assess fatigue than acceleration. The use of low cost, wearable, and uncalibrated sensors, such as acceleration and gyroscope, in industrial settings is promising to assess muscle fatigue in workers assigned to upper limb repetitive tasks.


Acceleration , Muscle Fatigue , Humans , Muscle Fatigue/physiology , Biomechanical Phenomena , Upper Extremity , Tea
19.
Med Probl Perform Art ; 37(3): 135-142, 2022 Sep.
Article En | MEDLINE | ID: mdl-36053491

Comparison of bow-side kinematics in violinists is hindered by the scarcity of studies available. This makes meta-analysis impossible. This paper assesses the effect of music-based variables (bow stroke, tempo, and string played) on intra- and inter-participant variability in joint kinematics. The joint kinematics of nine high-level violinists were acquired via a motion capture system while they played a standardized piece of music involving contrasting bow strokes and strings at different tempi. Results were compared using linear mixed models using the root mean square (RMS) for each joint. We found highly individualized patterns of play, deduced from a low intra- but high inter-musician variability (4.2° vs 13.1° of normalized RMS) in joint kinematics. String played and bow stroke had the greatest effect on joint kinematics. The string played had the greatest impact on shoulder kinematics, and the bow stroke had the greatest impact on elbow and wrist kinematics. Based on these results, we propose guidelines for future research designed to study bow kinematics in the field of biomechanics of violin movements. For ease of comparison between studies and to limit the time and resources required, our main suggestions are to use repeated measures designs with a legato reference condition and to choose pieces of music spanning multiple strings.


Music , Biomechanical Phenomena , Humans , Movement , Research Design
20.
Clin Biomech (Bristol, Avon) ; 97: 105685, 2022 07.
Article En | MEDLINE | ID: mdl-35671631

BACKGROUND: Moment arms are an indicator of the role of the muscles in joint actuation. An excursion method is often used to calculate them, even though it provides 1D results. As shoulder movement occurs in three dimensions (combination of flexion, abduction and axial rotation), moment arms should be given in 3D. Our objective was to assess the 3D moment arms of the rotator cuff (infraspinatus and teres minor) and deltoid muscles for movements with high arm elevation. METHODS: The 3D moment arms (components in plane of elevation, elevation and axial rotation) were assessed using a geometric method, enabling to calculate the moment arms in 3D, on five fresh post-mortem human shoulders. Movement with high range of motion were performed (including overhead movement). The humerus was elevated until it reaches its maximal posture in different elevation plane (flexion, scaption, abduction and elevation in a plane 30° posterior to frontal plane). FINDINGS: We found that the anterior deltoid was a depressor and contributes to move the elevation plane anteriorly. The median deltoid was a great elevator and the posterior deltoid mostly acted in moving the elevation plane posteriorly. The infraspinatus and teres minor were the greatest external rotator of the shoulder. The position of the glenohumeral joint induces changes in the muscular moment arms. The maximal shoulder elevation was 144° (performed in the scapular plane). INTERPRETATION: The knowledge of 3D moment arms for different arm elevations might help surgeons in planning tendon reconstructive surgery and help validate musculoskeletal models.


Rotator Cuff , Shoulder Joint , Biomechanical Phenomena , Cadaver , Humans , Movement/physiology , Range of Motion, Articular/physiology , Rotator Cuff/physiology , Shoulder Joint/physiology
...