Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
medRxiv ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38798603

ABSTRACT

Hermansky-Pudlak syndrome (HPS) is a group of rare genetic disorders, with several subtypes leading to fatal adult-onset pulmonary fibrosis (PF) and no effective treatment. Circulating biomarkers detecting early PF have not been identified. We investigated whether endocannabinoids could serve as blood biomarkers of PF in HPS. We measured endocannabinoids in the serum of HPS, IPF, and healthy human subjects and in a mouse model of HPSPF. Pulmonary function tests (PFT) were correlated with endocannabinoid measurements. In a pale ear mouse model of bleomycin-induced HPSPF, serum endocannabinoid levels were measured with and without treatment with zevaquenabant (MRI-1867), a peripheral CB1R and iNOS antagonist. In three separate cohorts, circulating anandamide levels were increased in HPS-1 patients with or without PF, compared to healthy volunteers. This increase was not observed in IPF patients or in HPS-3 patients, who do not have PF. Circulating anandamide (AEA) levels were negatively correlated with PFT. Furthermore, a longitudinal study over the course of 5-14 years with HPS-1 patients indicated that circulating AEA levels begin to increase with the fibrotic lung process even at the subclinical stages of HPSPF. In pale ear mice with bleomycin-induced HpsPF, serum AEA levels were significantly increased in the earliest stages of PF and remained elevated at a later fibrotic stage. Zevaquenabant treatment reduced the increased AEA levels and attenuated progression in bleomycin-induced HpsPF. Circulating AEA may be a prognostic blood biomarker for PF in HPS-1 patients. Further studies are indicated to evaluate endocannabinoids as potential surrogate biomarkers in progressive fibrotic lung diseases.

2.
Mol Genet Metab ; 137(1-2): 187-191, 2022.
Article in English | MEDLINE | ID: mdl-36088816

ABSTRACT

Pulmonary fibrosis is a progressive and often fatal lung disease that manifests in most patients with Hermansky-Pudlak syndrome (HPS) type 1. Although the pathobiology of HPS pulmonary fibrosis is unknown, several studies highlight the pathogenic roles of different cell types, including type 2 alveolar epithelial cells, alveolar macrophages, fibroblasts, myofibroblasts, and immune cells. Despite the identification of the HPS1 gene and progress in understanding the pathobiology of HPS pulmonary fibrosis, specific treatment for HPS pulmonary fibrosis is not available, emphasizing the need to identify cellular and molecular targets and to develop therapeutic strategies for this devastating disease. This commentary summarizes recent advances and aims to provide insights into gene therapy for HPS pulmonary fibrosis.


Subject(s)
Hermanski-Pudlak Syndrome , Pulmonary Fibrosis , Humans , Hermanski-Pudlak Syndrome/genetics , Hermanski-Pudlak Syndrome/therapy , Hermanski-Pudlak Syndrome/metabolism , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/therapy , Lung/pathology , Genetic Therapy
3.
Am J Physiol Lung Cell Mol Physiol ; 322(4): L581-L592, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35196880

ABSTRACT

Children and young adults with mutant forms of ataxia telangiectasia mutated (ATM), a kinase involved in DNA damage signaling and mitochondrial homeostasis, suffer from recurrent respiratory infections, immune deficiencies, and obstructive airways disease associated with disorganized airway epithelium. We previously showed in mice how Atm was required to mount a protective immune memory response to influenza A virus [IAV; Hong Kong/X31 (HKx31), H3N2]. Here, Atm wildtype (WT) and knockout (Atm-null) mice were used to investigate how Atm is required to regenerate the injured airway epithelium following IAV infection. When compared with WT mice, naive Atm-null mice had increased airway resistance and reduced lung compliance that worsened during infection before returning to naïve levels by 56 days postinfection (dpi). Although Atm-null lungs appeared pathologically normal before infection by histology, they developed an abnormal proximal airway epithelium after infection that contained E-cadherin+, Sox2+, and Cyp2f2+ cells lacking secretoglobin family 1 A member 1 (Scgb1a1) protein expression. Patchy and low expression of Scgb1a1 were eventually observed by 56 dpi. Genetic lineage tracing in HKx31-infected mice revealed club cells require Atm to rapidly and efficiently restore Scgb1a1 expression in proximal airways. Since Scgb1a1 is an immunomodulatory protein that protects the lung against a multitude of respiratory challenges, failure to efficiently restore its expression may contribute to the respiratory diseases seen in individuals with ataxia telangiectasia.


Subject(s)
Ataxia Telangiectasia , Influenza A virus , Influenza, Human , Animals , Ataxia Telangiectasia/genetics , Ataxia Telangiectasia/metabolism , Epithelial Cells/metabolism , Humans , Influenza A Virus, H3N2 Subtype , Mice , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...