Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Genet Evol ; 98: 105217, 2022 03.
Article in English | MEDLINE | ID: mdl-35065303

ABSTRACT

For centuries the world has been confronted with many infectious diseases, with a potential to turn into a pandemic posing a constant threat to human lives. Some of these pandemics occurred due to the emergence of new disease or re-emergence of previously known diseases with a few mutations. In such scenarios their optimal prevention and control options were not adequately developed. Most of these diseases are highly contagious and for their timely control, knowledge about the pathogens and disease progression is the basic necessity. In this review, we have presented a documented chronology of the earlier pandemics, evolutionary analysis of the infectious disease with pandemic potential, the role of RNA, difficulties in controlling pandemics, and the likely pathogens that could trigger future pandemics. In this study, the evolutionary history of the pathogens was identified by carrying out phylogenetic analysis. The percentage similarity between different infectious diseases is critically analysed for the identification of their correlation using online sequence matcher tools. The Baltimore classification system was used for finding the genomic nature of the viruses. It was observed that most of the infectious pathogens rise from their animal hosts with some mutations in their genome composition. The phylogenetic tree shows that the single-stranded RNA diseases have a common origin and many of them are having high similarity percentage. The outcomes of this study will help in the identification of potential pathogens that can cause future pandemics. This information will be helpful in the development of early detection techniques, devising preventive mechanism to limit their spread, prophylactic measures, Infection control and therapeutic options, thereby, strengthening our approach towards global preparedness against future pandemics.


Subject(s)
Communicable Disease Control , Communicable Diseases/epidemiology , Forecasting , Pandemics/prevention & control , Phylogeny , Animals , Humans
2.
Chem Biol Interact ; 350: 109654, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34634268

ABSTRACT

Since their use during the First World War, Blister agents have posed a major threat to the individuals and have caused around two million casualties. Major incidents occurred not only due to their use as chemical warfare agents but also because of occupational hazards. Therefore, a clear understanding of these agents and their mode of action is essential to develop effective decontamination and therapeutic strategies. The blister agents have been categorised on the basis of their chemistry and the biological interactions that entail post contamination. These compounds have been known to majorly cause blisters/bullae along with alkylation of the contaminated DNA. However, due to the high toxicity and restricted use, very little research has been conducted and a lot remains to be clearly understood about these compounds. Various decontamination solutions and detection technologies have been developed, which have proven to be effective for their timely mitigation. But a major hurdle seems to be the lack of proper understanding of the toxicological mechanism of action of these compounds. Current review is about the detailed and updated information on physical, chemical and biological aspects of various blister agents. It also illustrates the mechanism of their action, toxicological effects, detection technologies and possible decontamination strategies.


Subject(s)
Blister/chemically induced , Chemical Warfare Agents/chemistry , Chemical Warfare Agents/toxicity , Decontamination/methods , Alkylating Agents/chemistry , Alkylating Agents/toxicity , Arsenicals/adverse effects , Arsenicals/chemistry , Blister/therapy , Chemical Warfare Agents/classification , Eye/drug effects , Humans , Lung/drug effects , Models, Biological , Mustard Compounds/chemistry , Mustard Compounds/toxicity , Oximes/chemistry , Oximes/toxicity , Phosgene/chemistry , Phosgene/toxicity , Skin/drug effects
3.
Stem Cell Rev Rep ; 17(1): 113-131, 2021 02.
Article in English | MEDLINE | ID: mdl-32920752

ABSTRACT

The novel virus, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) caused the Corona Virus Disease-2019 (COVID-19) outbreak in Wuhan, Hubei province of China. This virus disseminated rapidly and reached to an unprecedented pandemic proportion in more than 213 nations with a large number of fatalities. The hypersecretion of pro-inflammatory cytokines is the main cause of mortality and morbidity due to COVID-19, therefore strategies that avert the cytokine storm may play a crucial role in abating the severity of COVID-19. This review highlights the minute details of SARS-CoV-2, its genomic organization, genomic variations within structural and non-structural proteins and viral progression mechanism in human beings. The approaches like antiviral strategies are discussed, including drugs that obstruct viral propagation and suppress the pro-inflammatory cytokines. This compilation emphasizes Mesenchymal Stem Cells (MSCs) based therapy alone or in combination with other therapeutics as an attractive curative approach for COVID-19 pandemic. The MSCs and its secretome, including antimicrobial peptides (AMPs) have various capabilities, for instance, immunomodulation, regeneration, antimicrobial properties, potential for attenuating the cytokine storm and bare minimum chances of being infected with SARS-CoV-2 virus. The immunomodulatory property of MSCs affects inflammatory state and regulates immune response during SARS-CoV-2 infection. However, as of now, there is no WHO-approved MSCs based therapy for the treatment of COVID-19 infection. Graphical abstract.


Subject(s)
COVID-19/therapy , Mesenchymal Stem Cell Transplantation , Pandemics , SARS-CoV-2/pathogenicity , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , Cytokines/immunology , Humans , Immunomodulation/immunology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/immunology
SELECTION OF CITATIONS
SEARCH DETAIL