Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Eur Thyroid J ; 5(1): 57-64, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27099840

ABSTRACT

BACKGROUND: Selenium (Se) is of importance for regular functioning of the immune system and thyroid gland, and may have a health effect in mild Graves' ophthalmopathy (GO). OBJECTIVE: As the Se status declines in inflammation, we analyzed whether GO activity or severity affects the Se status of patients. METHODS: Serum Se and selenoprotein P (SePP) concentrations were retrospectively determined in 84 consecutive GO patients before treatment and compared to their clinical activity score (CAS) and severity of eye changes (NOSPECS) status, and to the concentrations of autoantibodies targeting the TSH receptor (TRAK) or the IGF1 receptor (IGF1R-aAB). RESULTS: Serum Se and SePP were linearly associated, indicating a suboptimal Se status of our patients. In comparison to data from other European cohorts, the majority of GO patients had a relatively poor Se status ([Se] ± SD; 70.0 ± 23.8 µg/l), below the threshold needed for full expression of selenoproteins. TRAK were inversely associated with Se concentrations, while IGF1R-aAB titers were not associated with Se. Neither Se nor SePP concentrations differed between GO patients with severe versus mild or active versus inactive disease, or showed significant associations with the CAS or NOSPECS values. CONCLUSION: GO patients are at risk of a low Se status, yet disease severity or activity does not seem to affect Se or SePP concentrations directly. However, as the retrospective nature of the analysis does not allow conclusions on a potential causative role of Se on Graves' disease or GO risk, these results neither support nor discourage adjuvant Se supplementation attempts.

2.
Biochem Biophys Res Commun ; 443(3): 905-10, 2014 Jan 17.
Article in English | MEDLINE | ID: mdl-24361887

ABSTRACT

Hepatically-derived selenoprotein P (SePP) transports selenium (Se) via blood to other tissues including the testes. Male Sepp-knockout mice are infertile. SePP-mediated Se transport to Sertoli cells is needed for supporting biosynthesis of the selenoenzyme glutathione peroxidase-4 (GPX4) in spermatozoa. GPX4 becomes a structural component of sperm midpiece during sperm maturation, and its expression correlates to semen quality. We tested whether SePP is also present in seminal plasma, potentially correlating to fertility parameters. Semen quality was assessed by sperm density, morphology and motility. SePP was measured by an immunoluminometric assay, and trace elements were determined by X-ray fluorescence spectroscopy. SePP levels were considerably lower in seminal plasma as compared to serum (0.4±0.1 mg/l vs. 3.5±1.0 mg/l); Se concentrations showed a similar but less pronounced difference (48.9±20.7 µg/l vs. 106.7±17.3 µg/l). Se and Zn correlated positively in seminal fluid but not in serum. Seminal plasma SePP concentrations were independent of serum SePP concentrations, but correlated positively to sperm density and fraction of vital sperm. SePP concentrations in seminal plasma of vasectomized men were similar to controls indicating that accessory sex glands are a testes-independent source of SePP. This notion was corroborated by histochemical analyses localizing SePP in epithelial cells of seminal vesicles. We conclude that SePP is not only involved in Se transport to testes supporting GPX4 biosynthesis but it also becomes secreted into seminal plasma, likely important to protect sperm during storage, genital tract passage and final journey.


Subject(s)
Selenoprotein P/metabolism , Semen/metabolism , Spermatozoa/metabolism , Adult , Animals , Biomarkers/metabolism , Fertility , Humans , Male , Mice , Selenium/blood , Selenoprotein P/blood , Seminal Vesicles/cytology , Seminal Vesicles/metabolism , Zinc/blood
3.
PLoS One ; 7(10): e46644, 2012.
Article in English | MEDLINE | ID: mdl-23056383

ABSTRACT

Selenium (Se) is an essential trace element for selenoprotein biosynthesis. Selenoproteins have been implicated in cancer risk and tumor development. Selenoprotein P (SePP) serves as the major Se transport protein in blood and as reliable biomarker of Se status in marginally supplied individuals. Among the different malignancies, renal cancer is characterized by a high mortality rate. In this study, we aimed to analyze the Se status in renal cell cancer (RCC) patients and whether it correlates to cancer-specific mortality. To this end, serum samples of RCC patients (n = 41) and controls (n = 21) were retrospectively analyzed. Serum Se and SePP concentrations were measured by X-ray fluorescence and an immunoassay, respectively. Clinical and survival data were compared to serum Se and SePP concentrations as markers of Se status by receiver operating characteristic (ROC) curve and Kaplan-Meier and Cox regression analyses. In our patients, higher tumor grade and tumor stage at diagnosis correlated to lower SePP and Se concentrations. Kaplan-Meier analyses indicated that low Se status at diagnosis (SePP<2.4 mg/l, bottom tertile of patient group) was associated with a poor 5-year survival rate of 20% only. We conclude that SePP and Se concentrations are of prognostic value in RCC and may serve as additional diagnostic biomarkers identifying a Se deficit in kidney cancer patients potentially affecting therapy regimen. As poor Se status was indicative of high mortality odds, we speculate that an adjuvant Se supplementation of Se-deficient RCC patients might be beneficial in order to stabilize their selenoprotein expression hopefully prolonging their survival. However, this assumption needs to be rigorously tested in prospective clinical trials.


Subject(s)
Kidney Neoplasms/metabolism , Kidney Neoplasms/mortality , Selenoprotein P/metabolism , Aged , Aged, 80 and over , Female , Humans , Kaplan-Meier Estimate , Kidney Neoplasms/blood , Male , Middle Aged , Proportional Hazards Models , Retrospective Studies , Selenium/metabolism
4.
Biochem J ; 443(1): 103-9, 2012 Apr 01.
Article in English | MEDLINE | ID: mdl-22220593

ABSTRACT

Thyroid hormone action is mediated by the thyroid hormone receptors TRα1 and TRß. Defects in TRß lead to RTH (resistance to thyroid hormone) ß, a syndrome characterized by high levels of thyroid hormone and non-suppressed TSH (thyroid-stimulating hormone). However, a correct diagnosis of RTHß patients is difficult as the clinical picture varies. A biochemical serum marker indicative of defects in TRß signalling is needed and could simplify the diagnosis of RTHß, in particular the differentiation to TSH-secreting pituitary adenomas, which present with clinically similar symptoms. In the present paper we show that serum copper levels are regulated by thyroid hormone, which stimulates the synthesis and the export of the hepatic copper-transport protein ceruloplasmin into the serum. This is accompanied by a concerted reduction in the mRNA levels of other copper-containing proteins such as metallothioneins 1 and 2 or superoxide dismutase 1. The induction of serum copper is abolished in genetically hyperthyroid mice lacking TRß and human RTHß patients, demonstrating an important role of TRß for this process. Together with a previously reported TRα1 specific regulation of serum selenium, we show that the ratio of serum copper and selenium, which is largely independent of thyroid hormone levels, volume changes or sample degradation, can constitute a valuable novel biomarker for RTHß. Moreover, it could also provide a suitable large-scale screening parameter to identify RTHα patients, which have not been identified to date.


Subject(s)
Copper/blood , Thyroid Hormone Resistance Syndrome/blood , Adolescent , Adult , Animals , Biomarkers/blood , Ceruloplasmin/genetics , Ceruloplasmin/metabolism , Child , Child, Preschool , Copper/metabolism , Copper/urine , Female , Gene Expression/drug effects , Gene Expression Profiling , Humans , Infant , Kidney/enzymology , Kidney/metabolism , Liver/enzymology , Liver/metabolism , Male , Metallothionein/genetics , Metallothionein/metabolism , Mice , Mice, Inbred C57BL , Middle Aged , Selenium/blood , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Superoxide Dismutase-1 , Thyroid Hormone Resistance Syndrome/drug therapy , Triiodothyronine/pharmacology , Triiodothyronine/therapeutic use , Young Adult
5.
PLoS One ; 5(9): e12931, 2010 Sep 22.
Article in English | MEDLINE | ID: mdl-20877559

ABSTRACT

Impaired expression of selenium-containing proteins leads to perturbed thyroid hormone (TH) levels, indicating the central importance of selenium for TH homeostasis. Moreover, critically ill patients with declining serum selenium develop a syndrome of low circulating TH and a central downregulation of the hypothalamus-pituitary-thyroid axis. This prompted us to test the reciprocal effect, i.e., if TH status would also regulate selenoprotein expression and selenium levels. To investigate the TH dependency of selenium metabolism, we analyzed mice expressing a mutant TH receptor α1 (TRα1+m) that confers a receptor-mediated hypothyroidism. Serum selenium was reduced in these animals, which was a direct consequence of the mutant TRα1 and not related to their metabolic alterations. Accordingly, hyperthyroidism, genetically caused by the inactivation of TRß or by oral TH treatment of adult mice, increased serum selenium levels in TRα1+m and controls, thus demonstrating a novel and specific role for TRα1 in selenium metabolism. Furthermore, TH affected the mRNA levels for several enzymes involved in selenoprotein biosynthesis as well as serum selenoprotein P concentrations and the expression of other antioxidative selenoproteins. Taken together, our results show that TH positively affects the serum selenium status and regulates the expression of several selenoproteins. This demonstrates that selenium and TH metabolism are interconnected through a feed-forward regulation, which can in part explain the rapid parallel downregulation of both systems in critical illness.


Subject(s)
Gene Expression Regulation , Hypothyroidism/metabolism , Selenium/blood , Selenoproteins/genetics , Triiodothyronine/metabolism , Animals , Disease Models, Animal , Female , Humans , Hypothyroidism/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Selenoproteins/metabolism , Thyroid Hormone Receptors alpha/genetics , Thyroid Hormone Receptors alpha/metabolism , Thyroid Hormone Receptors beta/genetics , Thyroid Hormone Receptors beta/metabolism
6.
Biochem J ; 431(1): 103-11, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20653565

ABSTRACT

Distribution of selenium (Se) within the mammalian body is mediated by SePP (selenoprotein P), an Se-rich glycoprotein secreted by hepatocytes. Genetic and biochemical evidence indicate that the endocytic receptors ApoER2 (apolipoprotein E receptor 2) and megalin mediate tissue-specific SePP uptake. In the present study megalin-mutant mice were fed on diets containing adequate (0.15 p.p.m.) or low (0.08 p.p.m.) Se content and were analysed for tissue and plasma Se levels, cellular GPx (glutathione peroxidase) activities and protein expression patterns. Megalin-mutant mice displayed increased urinary Se loss, which correlated with SePP excretion in their urine. Accordingly, serum Se and SePP levels were significantly reduced in megalin-mutant mice, reaching marginal levels on the low-Se diet. Moreover, kidney Se content and expression of renal selenoproteins were accordingly reduced, as was SePP internalization along the proximal tubule epithelium. Although GPx4 expression was not altered in testis, Se and GPx activity in liver and brain were significantly reduced. When fed on a low-Se diet, megalin-mutant mice developed impaired movement co-ordination, but no astrogliosis. These findings suggest that megalin prevents urinary SePP loss and participates in brain Se/SePP uptake.


Subject(s)
Brain/metabolism , Kidney/metabolism , Liver/metabolism , Low Density Lipoprotein Receptor-Related Protein-2/genetics , Mutation , Selenium/metabolism , Selenoprotein P/metabolism , Animals , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Mice , Rats , Selenium/blood , Selenium/urine , Selenoprotein P/blood , Selenoprotein P/urine
7.
Br J Nutr ; 104(11): 1601-4, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20637135

ABSTRACT

Daily nutrition varies considerably among individuals. The number of vegetarians is increasing continuously due to ethical, environmental, religious or other reasons. There is growing concern over their nutritional status with respect to micronutrient deficiencies. Among the essential trace elements, Se is of prime importance as it is part of the active site in selenoproteins. European soil and plants are relatively poor sources of Se, while farm animals are generally supplemented with Se in order to improve their health and avoid deficiency syndromes. We therefore wondered whether German vegetarians display a measurable Se deficiency. To this end, we compared young vegetarians (n 54) and omnivores (n 53). We assessed their Se status by measuring extracellular glutathione peroxidase 3 (GPX3) activity, and concentrations of total serum Se and circulating Se-transport protein selenoprotein P (SEPP). GPX3 activities were not different between the groups, whereas both total Se and SEPP concentrations were reduced to 79.5 and 71.2 % in vegetarians compared with omnivores. When splitting the group of vegetarians into vegans (n 26) and vegetarians consuming egg and milk products (n 28), analyses of the Se-dependent biomarkers did not reveal significant differences. We conclude that low serum Se is mirrored by circulating SEPP concentrations, but not by GPX3 activities in marginally supplied individuals. The specific dietary Se sources, divergent metabolic routes of selenomethionine v. selenocysteine and the different saturation kinetics of GPX3 and SEPP probably underlie our contradictory findings. Whether German vegetarians and vegans need to be considered as a Se-deficient group depends on the biomarker chosen.


Subject(s)
Deficiency Diseases/diagnosis , Diet, Vegetarian , Glutathione Peroxidase/blood , Nutritional Status , Selenium/blood , Selenoprotein P/blood , Adult , Biomarkers/blood , Deficiency Diseases/blood , Female , Germany , Humans , Male , Selenium/deficiency , Young Adult
8.
Gen Comp Endocrinol ; 168(2): 269-74, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20138181

ABSTRACT

Several environmental pollutants have been identified as antiandrogenic endocrine disrupting chemicals (EDC), with flutamide (FLU) being a model compound for this type of action. Despite impacts of EDC interfering with sexual differentiation and reproduction in amphibians, established information about suggested effects on sexual behavior is still lacking. In this study adult male Xenopus laevis were injected with human chorionic gonadotropin (hCG) to initiate mate calling behavior. After one day hCG-stimulated frogs were treated via aqueous exposure over three days without and with FLU at concentrations of 10(-8) and 10(-6) M in comparison to untreated frogs. Androgen controlled mate calling behavior was recorded during the 12h dark period. At the end of exposure circulating levels of testosterone (T) and 17beta-estradiol (E2) were determined and furthermore gene expression was measured concerning reproductive biomarkers such as hypophysial luteinizing hormone (LH), follicle-stimulating hormone (FSH), testicular aromatase (ARO), 5alpha reductase type 1 (SRD5alpha1) and 5alpha reductase type 2 (SRD5alpha2). Both concentrations of FLU caused a significant decrease in calling activity starting at the second day of exposure. HCG injected positive controls had elevated levels of T compared to negative control frogs while in parallel treatment with FLU did not affect significantly the hCG elevated sex steroid levels. Furthermore, hCG treatment led to significantly decreased levels of gene expression for ARO and SRD5alpha2 but no impacts were detected on LH, FSH or SRD5alpha1 mRNA levels compared to negative controls. In summary, the behavioral parameter mate calling is the most sensitive biomarker detecting antiandrogenic modes of action in this challenge-experiment indicating that this non-invasive method could markedly contribute for sensitive assessment of antiandrogenic EDC.


Subject(s)
Androgen Antagonists/toxicity , Endocrine Disruptors/toxicity , Flutamide/toxicity , Sexual Behavior, Animal/drug effects , Xenopus laevis/physiology , Animals , Aromatase/genetics , Estradiol/blood , Follicle Stimulating Hormone/genetics , Gene Expression/drug effects , Luteinizing Hormone/genetics , Male , Testosterone/blood , Xenopus laevis/blood
9.
Ann N Y Acad Sci ; 1163: 187-200, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19456339

ABSTRACT

Environmental compounds can interfere with endocrine systems of wildlife and humans. The main sink of such substances, called endocrine disrupters (ED), are surface waters. Thus, aquatic vertebrates, such as fish and amphibians, are most endangered. ED can adversely affect reproductive biology and the thyroid system. ED act by (anti)estrogenic and (anti)androgenic modes of action, resulting in abnormal sexual differentiation and impaired reproduction. These effects are mainly driven by direct interferences of ED with sex steroid receptors rather than indirectly by impacting synthesis and bioavailability of sex steroids, which in turn might affect the hypothalamic-pituitary-gonadal axis. Recent findings reveal that, in addition to the human-produced waste of ED, natural sources, such as parasites and decomposition of leaves, also might act as ED, markedly affecting sexual differentiation and reproduction in fish and amphibians. Although the thyroid system has essential functions in both fish and amphibians, amphibian metamorphosis has been introduced as the most sensitive model to detect thyroidal ED; no suitable fish model exists. Whereas ED may act primarily on only one specific endocrine target, all endocrine systems will eventually be deregulated as they are intimately connected to each other. The recent ecotoxicological issue of pharmaceutically active compounds (PhACs) present in the aquatic environment indicates a high potential for further endocrine modes of action on aquatic vertebrates by ED derived from PhACs, such as glucocorticoids, progestins, and beta-agonists.


Subject(s)
Endocrine Disruptors/metabolism , Vertebrates/metabolism , Animals , Humans , Marine Biology , Pharmaceutical Preparations , Reproduction , Thyroid Gland/metabolism
10.
FASEB J ; 23(6): 1758-65, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19136613

ABSTRACT

The acute-phase response (APR) is characterized by an impaired metabolism of the essential trace element selenium (Se). Moreover, low-Se concentrations correlate to mortality risk in sepsis. Therefore, we analyzed the expression of the central Se transport and storage protein selenoprotein P (Sepp1) during an APR in mice. Serum Se and Sepp1 concentrations declined in parallel after injection of lipopolysaccharide to 50 and 39% of control-injected littermates, respectively. This negative APR proceeded largely independent from hepatic Sepp1 transcript concentrations. Instead, we identified a set of hepatic transcripts involved in Se metabolism, which declined coordinately during the APR, including the selenocysteine-specific elongation factor (EFsec), selenophosphate-synthetase 2 (Sephs2), selenocysteine-tRNA[Ser]Sec synthase (SecS), and phosphoseryl-tRNA[Ser]Sec kinase (Pstk). Pstk reacted most strongly and qualified as a new limiting factor for Sepp1 biosynthesis in siRNA-mediated knockdown experiments in hepatocytes in culture. Analogous experiments were performed with mice transgenic for hepatocyte-specific human Sepp1 cDNA to verify this hypothesis. Similar kinetics and effect sizes of Sepp1 expression were observed as before in wild-type mice. We conclude that hepatic translation of Sepp1 mRNA is specifically impaired during the APR. This deficit disrupts regular Se metabolism, transport, and supply to peripheral tissues and likely aggravates the pathological status.


Subject(s)
Acute-Phase Reaction/metabolism , Liver/metabolism , Selenium/metabolism , Selenoprotein P/biosynthesis , Animals , Down-Regulation , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mitogen-Activated Protein Kinase 3/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Selenoprotein P/blood , Selenoprotein P/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...