Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35798175

ABSTRACT

The insular cortex (IC) is a brain structure involved in physiological and behavioural responses during stressful events. However, the local neurochemical mechanisms involved in control of stress responses by the IC are poorly understood. Thus, this study aimed to investigate the involvement of glutamatergic neurotransmission within the IC in cardiovascular, autonomic and neuroendocrine responses to an acute session of restraint stress. For this, the selective NMDA glutamate receptor antagonist LY235959 (1 nmol/100 nL) or the selective non-NMDA glutamate receptor antagonist NBQX (1 nmol/100 nL) were microinjected into the IC 10 min before the onset of the 60 min session of restraint stress. We observed that the antagonism of NMDA receptors within the IC enhanced the restraint-evoked increase in arterial pressure and heart rate, while blockade of non-NMDA receptors did not affect these cardiovascular responses. Spontaneous baroreflex analysis demonstrated that microinjection of LY235959 into the IC decreased baroreflex activity during restraint stress. The decrease in tail skin temperature during restraint stress was shifted to an increase in animals treated with the NMDA receptor antagonist. Nevertheless, the blockade of either NMDA or non-NMDA glutamate receptors within the IC did not affect the increase in circulating corticosterone levels during restraint stress. Overall, our findings provide evidence that IC glutamatergic neurotransmission, acting via local NMDA receptors, plays a prominent role in the control of autonomic and cardiovascular responses to restraint stress, but without affecting neuroendocrine adjustments.


Subject(s)
Excitatory Amino Acid Antagonists , Receptors, N-Methyl-D-Aspartate , Animals , Blood Pressure , Excitatory Amino Acid Antagonists/pharmacology , Glutamic Acid , Heart Rate/physiology , Insular Cortex , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/metabolism , Restraint, Physical
2.
Cell Mol Neurobiol ; 42(1): 109-124, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33864194

ABSTRACT

The renin-angiotensin system (RAS) is involved in cardiovascular and hydroelectrolytic control, being associated with the development of hypertension. The restraint stress (RS) model is an aversive situation, which promotes a sustained increase in blood pressure and heart rate, and stimulation of the hypothalamic-pituitary-adrenal axis. Stress leads to an increase of angiotensin-II contents both in the circulation and the central nervous system (CNS), as well as an increased expression of AT-1 receptors in CNS structures related to stress. Stressful stimuli are associated with the modulation of autonomic nervous system, as well as baroreflex; changes in this adjustment mechanism are related to cardiovascular diseases. We hypothesized that RAS is involved in the modulation of autonomic, neuroendocrine, and functional RS-caused alterations. The intravenous (i.v) pretreatment of rats with lisinopril, an angiotensin-converting-enzyme inhibitor, reduced the RS-evoked pressor response. The doses of 0.1 and 0.3 mg/kg also reduced the RS-evoked tachycardia, while in the dose of 1 mg/kg of lisinopril potentiated the tachycardic one. Additionally, i.v. pretreatment with losartan, a selective AT-1 receptor antagonist, reduced the pressor and the tachycardic responses caused by RS. Pretreatment with lisinopril 0.3 mg/kg increased the power of the low frequency (LF) band of the systolic BP spectrum after the treatment without affecting this parameter during RS. The pretreatment with losartan 1 mg/kg increased the power of the high frequency (HF) band and reduced the LF (n.u.) and the LF/HF ratio of the pulse interval spectrum in the first hour of RS. Concerning baroreflex sensitiveness (SBR), pretreatments with losartan or lisinopril did not affect the gain of the baroreflex sequences. However, the pretreatment with losartan reduced the baroreflex effectiveness index of the total sequences in the third hour of the RS. These results indicate that Ang-II, via the AT-1 receptor, plays a facilitating influence on the cardiovascular response caused by RS; facilitates sympathetic activation and reduces parasympathetic activity related to RS; facilitates the baroreflex activation during RS and favors corticosterone release under this stress model. The impairment of Ang-II synthesis, as well as the blockade of AT-1 receptors, may constitute an important pharmacological strategy to treat cardiovascular consequences caused by stress.


Subject(s)
Hypothalamo-Hypophyseal System , Receptors, Angiotensin , Angiotensin II/pharmacology , Animals , Autonomic Nervous System , Blood Pressure/physiology , Heart Rate/physiology , Losartan/pharmacology , Male , Pituitary-Adrenal System , Rats , Rats, Wistar , Receptor, Angiotensin, Type 1 , Stress, Psychological
3.
Front Pharmacol ; 10: 1547, 2019.
Article in English | MEDLINE | ID: mdl-32038236

ABSTRACT

We hypothesized that dorsomedial hypothalamus (DMH) modulates autonomic and neuroendocrine responses in rats at rest and when subjected to restraint stress (RS). Male Wistar rats were used, and guide cannulas were bilaterally implanted in the DMH for microinjection of vehicle or the nonspecific synaptic blocker CoCl2 (1 mM/100 nl). A polyethylene catheter was inserted into the femoral artery for the recording of arterial pressure and heart rate (HR). Tail temperature was measured using a thermal camera. The session of RS started 10 min after DMH treatment with vehicle or CoCl2. Under home-cage condition, the pretreatment of DMH with CoCl2 increased baseline blood pressure (BP), and heart rate (HR) without affecting the tail temperature. In addition, it decreased plasma vasopressin levels without affecting plasma corticosterone and oxytocin contents. When rats pretreated with CoCl2 were exposed to RS, the RS-evoked cardiovascular were similar to those observed in vehicle-treated animals; however, because cobalt pretreatment of the DMH increased baseline BP and HR values, and the RS-evoked cardiovascular responses did not exceed those observed in vehicle-treated animals, suggesting a possible celling limit, the possibility that DMH is involved in the modulation of RS-evoked cardiovascular responses cannot be certainly excluded. Nonetheless, the pretreatment of DMH with CoCl2 blocked the reduction in tail temperature caused by RS. The DMH pretreatment with CoCl2 did not modify the RS-evoked increase in plasma corticosterone and oxytocin contents. In conclusion, the present data suggest the involvement of DMH in the maintenance of BP, HR, and vasopressin release under the rest conditions at the home-cage. Furthermore, indicate that DMH is an important thermoregulatory center during exposure to RS, regulating tail artery vasoconstriction.

SELECTION OF CITATIONS
SEARCH DETAIL
...