Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Endocrinol ; 262(2)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38805506

ABSTRACT

Bone marrow adipose tissue (BMAT) comprises >10% of total adipose mass in healthy humans. It increases in diverse conditions, including ageing, obesity, osteoporosis, glucocorticoid therapy, and notably, during caloric restriction (CR). BMAT potentially influences skeletal, metabolic, and immune functions, but the mechanisms of BMAT expansion remain poorly understood. Our hypothesis is that, during CR, excessive glucocorticoid activity drives BMAT expansion. The enzyme 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) amplifies glucocorticoid activity by catalysing intracellular regeneration of active glucocorticoids from inert 11-keto forms. Mice lacking 11ß-HSD1 resist metabolic dysregulation and bone loss during exogenous glucocorticoid excess; thus, we hypothesised that 11ß-HSD1 knockout mice would also resist excessive glucocorticoid action during CR, thereby restrining BMAT expansion and bone loss. To test this, we first confirmed that 11ß-HSD1 is expressed in mouse and human bone marrow. We then investigated the effects of CR in male and female control and 11ß-HSD1 knockout mice from 9 to 15 weeks of age. CR increased Hsd11b1 mRNA in adipose tissue and bone marrow. Deletion of Hsd11b1 did not alter bone or BMAT characteristics in mice fed a control diet and had little effect on tibial bone microarchitecture during CR. Notably, Hsd11b1 deletion attenuated the CR-induced increases in BMAT and prevented increases in bone marrow corticosterone in males but not females. This was not associated with suppression of glucocorticoid target genes in bone marrow. Instead, knockout males had increased progesterone in plasma and bone marrow. Together, our findings show that knockout of 11ß-HSD1 prevents CR-induced BMAT expansion in a sex-specific manner and highlights progesterone as a potential new regulator of bone marrow adiposity.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1 , Adiposity , Bone Marrow , Caloric Restriction , Mice, Knockout , Animals , 11-beta-Hydroxysteroid Dehydrogenase Type 1/genetics , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Female , Male , Adiposity/genetics , Bone Marrow/metabolism , Mice , Humans , Adipose Tissue/metabolism , Mice, Inbred C57BL , Glucocorticoids/metabolism , Sex Factors
2.
Int Rev Cell Mol Biol ; 367: 101-147, 2022.
Article in English | MEDLINE | ID: mdl-35461656

ABSTRACT

Macrophages are a key component of the renal mononuclear phagocyte system, playing a major role in defense against infection, renal injury and repair. Yolk sac macrophage precursors seed the early embryonic kidney and are important for renal development. Later, renal macrophages are derived from hematopoietic stem cells and in adult life, there is a significant contribution from circulating monocytes, which is enhanced in response to infection or injury. Macrophages are highly plastic and can alter their phenotype in response to cues from parenchymal renal cells. Danger-associated molecules released from injured kidney cells may activate macrophages toward a pro-inflammatory phenotype, mediating further recruitment of inflammatory cells, exacerbating renal injury and activating renal fibroblasts to promote scarring. In acute kidney injury, once the injury stimulus has abated, macrophages may adopt a more reparative phenotype, dampening the immune response and promoting repair of renal tissue. However, in chronic kidney disease ongoing activation of pro-inflammatory monocytes and persistence of reparative macrophages leads to glomerulosclerosis and tubulointerstitial fibrosis, the hallmarks of end-stage kidney disease. Several strategies to inhibit the recruitment, activation and secretory products of pro-inflammatory macrophages have proven beneficial in pre-clinical models and are now undergoing clinical trials in patients with kidney disease. In addition, macrophages may be utilized in cell therapy as a "Trojan Horse" to deliver targeted therapies to the kidney. Single-cell RNA sequencing has identified a previously unappreciated spectrum of macrophage phenotypes, which may be selectively present in injury or repair, and ongoing functional analyses of these subsets may identify more specific targets for therapeutic intervention.


Subject(s)
Acute Kidney Injury , Kidney , Female , Humans , Macrophages , Male , Phenotype
3.
Mol Metab ; 48: 101225, 2021 06.
Article in English | MEDLINE | ID: mdl-33785425

ABSTRACT

OBJECTIVE: Carbonyl reductase 1 (Cbr1), a recently discovered contributor to tissue glucocorticoid metabolism converting corticosterone to 20ß-dihydrocorticosterone (20ß-DHB), is upregulated in adipose tissue of obese humans and mice and may contribute to cardiometabolic complications of obesity. This study tested the hypothesis that Cbr1-mediated glucocorticoid metabolism influences glucocorticoid and mineralocorticoid receptor activation in adipose tissue and impacts glucose homeostasis in lean and obese states. METHODS: The actions of 20ß-DHB on corticosteroid receptors in adipose tissue were investigated first using a combination of in silico, in vitro, and transcriptomic techniques and then in vivo administration in combination with receptor antagonists. Mice lacking one Cbr1 allele and mice overexpressing Cbr1 in their adipose tissue underwent metabolic phenotyping before and after induction of obesity with high-fat feeding. RESULTS: 20ß-DHB activated both the glucocorticoid and mineralocorticoid receptor in adipose tissue and systemic administration to wild-type mice induced glucose intolerance, an effect that was ameliorated by both glucocorticoid and mineralocorticoid receptor antagonism. Cbr1 haploinsufficient lean male mice had lower fasting glucose and improved glucose tolerance compared with littermate controls, a difference that was abolished by administration of 20ß-DHB and absent in female mice with higher baseline adipose 20ß-DHB concentrations than male mice. Conversely, overexpression of Cbr1 in adipose tissue resulted in worsened glucose tolerance and higher fasting glucose in lean male and female mice. However, neither Cbr1 haploinsfficiency nor adipose overexpression affected glucose dyshomeostasis induced by high-fat feeding. CONCLUSIONS: Carbonyl reductase 1 is a novel regulator of glucocorticoid and mineralocorticoid receptor activation in adipose tissue that influences glucose homeostasis in lean mice.


Subject(s)
Adipose Tissue/metabolism , Alcohol Oxidoreductases/metabolism , Glucocorticoids/metabolism , Glucose Intolerance/metabolism , Obesity/metabolism , Receptors, Glucocorticoid/metabolism , Signal Transduction/genetics , Alcohol Oxidoreductases/genetics , Animals , Corticosterone/analogs & derivatives , Corticosterone/blood , Corticosterone/pharmacology , Diet, High-Fat/adverse effects , Disease Models, Animal , Female , Gene Knockdown Techniques , Glucose/metabolism , Glucose Intolerance/genetics , HEK293 Cells , Homeostasis/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Obesity/genetics , Receptors, Mineralocorticoid/metabolism , Signal Transduction/drug effects
4.
Kidney360 ; 2(11): 1844-1851, 2021 11 25.
Article in English | MEDLINE | ID: mdl-35372996

ABSTRACT

Kidney disease represents a global health burden of increasing prevalence and is an independent risk factor for cardiovascular disease. Myeloid cells are a major cellular compartment of the immune system; they are found in the healthy kidney and in increased numbers in the damaged and/or diseased kidney, where they act as key players in the progression of injury, inflammation, and fibrosis. They possess enormous plasticity and heterogeneity, adopting different phenotypic and functional characteristics in response to stimuli in the local milieu. Although this inherent complexity remains to be fully understood in the kidney, advances in single-cell genomics promise to change this. Specifically, single-cell RNA sequencing (scRNA-seq) has had a transformative effect on kidney research, enabling the profiling and analysis of the transcriptomes of single cells at unprecedented resolution and throughput, and subsequent generation of cell atlases. Moving forward, combining scRNA- and single-nuclear RNA-seq with greater-resolution spatial transcriptomics will allow spatial mapping of kidney disease of varying etiology to further reveal the patterning of immune cells and nonimmune renal cells. This review summarizes the roles of myeloid cells in kidney health and disease, the experimental workflow in currently available scRNA-seq technologies, and published findings using scRNA-seq in the context of myeloid cells and the kidney.


Subject(s)
Kidney Diseases , Single-Cell Analysis , Gene Expression Profiling , Humans , Kidney Diseases/genetics , Sequence Analysis, RNA , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...