Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Robot ; 6(50)2021 01 13.
Article in English | MEDLINE | ID: mdl-34043577

ABSTRACT

The deep chlorophyll maximum (DCM) layer is an ecologically important feature of the open ocean. The DCM cannot be observed using aerial or satellite remote sensing; thus, in situ observations are essential. Further, understanding the responses of microbes to the environmental processes driving their metabolism and interactions requires observing in a reference frame that moves with a plankton population drifting in ocean currents, i.e., Lagrangian. Here, we report the development and application of a system of coordinated robots for studying planktonic biological communities drifting within the ocean. The presented Lagrangian system uses three coordinated autonomous robotic platforms. The focal platform consists of an autonomous underwater vehicle (AUV) fitted with a robotic water sampler. This platform localizes and drifts within a DCM community, periodically acquiring samples while continuously monitoring the local environment. The second platform is an AUV equipped with environmental sensing and acoustic tracking capabilities. This platform characterizes environmental conditions by tracking the focal platform and vertically profiling in its vicinity. The third platform is an autonomous surface vehicle equipped with satellite communications and subsea acoustic tracking capabilities. While also acoustically tracking the focal platform, this vehicle serves as a communication relay that connects the subsea robot to human operators, thereby providing situational awareness and enabling intervention if needed. Deployed in the North Pacific Ocean within the core of a cyclonic eddy, this coordinated system autonomously captured fundamental characteristics of the in situ DCM microbial community in a manner not possible previously.


Subject(s)
Robotics/instrumentation , Seawater/microbiology , Acoustics , Chlorophyll/analysis , Ecosystem , Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Environmental Monitoring/statistics & numerical data , Humans , Microbiota/genetics , Microbiota/physiology , Oceanography , Oceans and Seas , Pacific Ocean , Plankton , Satellite Communications , Seawater/analysis
2.
Science ; 318(5853): 1098-102, 2007 Nov 16.
Article in English | MEDLINE | ID: mdl-18006738

ABSTRACT

In our continuing quest for knowledge, robots are powerful tools for accessing environments too dangerous or too remote for human exploration. Early systems functioned under close human supervision, effectively limited to executing preprogrammed tasks. However, as exploration moves to regions where communication is ineffective or unviable, robots will need to carry out complex tasks without human supervision. To enable such capabilities, robots are being enhanced by advances ranging from new sensor development to automated mission planning software, distributed robotic control, and more efficient power systems. As robotics technology becomes simultaneously more capable and economically viable, individual robots operated at large expense by teams of experts are increasingly supplemented by teams of robots used cooperatively under minimal human supervision.

SELECTION OF CITATIONS
SEARCH DETAIL
...