Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Diabetes Investig ; 15(7): 797-804, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38426644

ABSTRACT

Insulin-deficient (type 1) diabetes is treated by providing insulin to maintain euglycemia. The current standard of care is a quasi-closed loop integrating automated insulin delivery with a continuous glucose monitoring sensor. Cell replacement technologies are advancing as an alternative treatment and have been tested as surrogates to cadaveric islets in transplants. In addition, immunomodulatory treatments to delay the onset of type 1 diabetes in high-risk (stage 2) individuals have gained regulatory approval. We have pioneered a cell conversion approach to restore insulin production through pharmacological conversion of intestinal epithelial cells into insulin-producing cells. We have advanced this approach along a translational trajectory through the discovery of small molecule forkhead box protein O1 inhibitors. When administered to different rodent models of insulin-deficient diabetes, these inhibitors have resulted in robust glucose-lowering responses and generation of insulin-producing cells in the gut epithelium. We review past work and delineate a path to human clinical trials.


Subject(s)
Diabetes Mellitus, Type 1 , Epithelial Cells , Insulin-Secreting Cells , Humans , Animals , Diabetes Mellitus, Type 1/therapy , Epithelial Cells/metabolism , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Intestinal Mucosa/metabolism
2.
Mol Metab ; 66: 101624, 2022 12.
Article in English | MEDLINE | ID: mdl-36341906

ABSTRACT

OBJECTIVE: Lifelong insulin replacement remains the mainstay of type 1 diabetes treatment. Genetic FoxO1 ablation promotes enteroendocrine cell (EECs) conversion into glucose-responsive ß-like cells. Here, we tested whether chemical FoxO1 inhibitors can generate ß-like gut cells. METHODS: We used Ngn3-or Villin-driven FoxO1 ablation to capture the distinctive developmental effects of FoxO1 on EEC pool. We combined FoxO1 ablation with Notch inhibition to enhance the expansion of EEC pool. We tested the ability of an orally available small molecule of FoxO1 inhibitor, Cpd10, to phenocopy genetic ablation of FoxO1. We evaluated the therapeutic impact of genetic ablation or chemical inhibition of FoxO1 on insulin-deficient diabetes in Ins2Akita/+ mice. RESULTS: Pan-intestinal epithelial FoxO1 ablation expanded the EEC pool, induced ß-like cells, and improved glucose tolerance in Ins2Akita/+ mice. This genetic effect was phenocopied by Cpd10. Cpd10 induced ß-like cells that released insulin in response to glucose in gut organoids, and this effect was enhanced by the Notch inhibitor, DBZ. In Ins2Akita/+ mice, a five-day course of either Cpd10 or DBZ induced intestinal insulin-immunoreactive ß-like cells, lowered glycemia, and increased plasma insulin levels without apparent adverse effects. CONCLUSION: These results provide proof of principle of gut cell conversion into ß-like cells by a small molecule FoxO1 inhibitor, paving the way for clinical applications.


Subject(s)
Diabetes Mellitus , Insulin-Secreting Cells , Animals , Mice , Enteroendocrine Cells , Forkhead Box Protein O1/genetics , Glucose/pharmacology , Insulin/genetics , Organoids , Receptors, Notch/antagonists & inhibitors
3.
J Clin Invest ; 132(24)2022 12 15.
Article in English | MEDLINE | ID: mdl-36282572

ABSTRACT

Targeting lineage-defined transcriptional dependencies has emerged as an effective therapeutic strategy in cancer treatment. Through screening for molecular vulnerabilities of mantle cell lymphoma (MCL), we identified a set of transcription factors (TFs) including FOXO1, EBF1, PAX5, and IRF4 that are essential for MCL propagation. Integrated chromatin immunoprecipitation and sequencing (ChIP-Seq) with transcriptional network reconstruction analysis revealed FOXO1 as a master regulator that acts upstream in the regulatory TF hierarchy. FOXO1 is both necessary and sufficient to drive MCL lineage commitment through supporting the lineage-specific transcription programs. We further show that FOXO1, but not its close paralog FOXO3, can reprogram myeloid leukemia cells and induce B-lineage gene expression. Finally, we demonstrate that cpd10, a small molecule identified from an enriched FOXO1 inhibitor library, induces a robust cytotoxic response in MCL cells in vitro and suppresses MCL progression in vivo. Our findings establish FOXO1 inhibition as a therapeutic strategy targeting lineage-driven transcriptional addiction in MCL.


Subject(s)
Lymphoma, Mantle-Cell , Humans , Adult , Lymphoma, Mantle-Cell/genetics , Gene Regulatory Networks , Forkhead Box Protein O1/genetics
4.
J Clin Invest ; 132(24)2022 12 15.
Article in English | MEDLINE | ID: mdl-36282594

ABSTRACT

As a highly regenerative organ, the intestine is a promising source for cellular reprogramming for replacing lost pancreatic ß cells in diabetes. Gut enterochromaffin cells can be converted to insulin-producing cells by forkhead box O1 (FoxO1) ablation, but their numbers are limited. In this study, we report that insulin-immunoreactive cells with Paneth/goblet cell features are present in human fetal intestine. Accordingly, lineage-tracing experiments show that, upon genetic or pharmacologic FoxO1 ablation, the Paneth/goblet lineage can also undergo conversion to the insulin lineage. We designed a screening platform in gut organoids to accurately quantitate ß-like cell reprogramming and fine-tune a combination treatment to increase the efficiency of the conversion process in mice and human adult intestinal organoids. We identified a triple blockade of FOXO1, Notch, and TGF-ß that, when tested in insulin-deficient streptozotocin (STZ) or NOD diabetic animals, resulted in near normalization of glucose levels, associated with the generation of intestinal insulin-producing cells. The findings illustrate a therapeutic approach for replacing insulin treatment in diabetes.


Subject(s)
Diabetes Mellitus , Insulin-Secreting Cells , Humans , Mice , Animals , Forkhead Box Protein O1/genetics , Forkhead Transcription Factors/genetics , Mice, Inbred NOD , Insulin/genetics
5.
Mol Metab ; 66: 101618, 2022 12.
Article in English | MEDLINE | ID: mdl-36283677

ABSTRACT

OBJECTIVES: Insulin treatment remains the sole effective intervention for Type 1 Diabetes. Here, we investigated the therapeutic potential of converting intestinal epithelial cells to insulin-producing, glucose-responsive ß-like cells by targeted inhibition of FOXO1. We have previously shown that this can be achieved by genetic ablation in gut Neurogenin3 progenitors, adenoviral or shRNA-mediated inhibition in human gut organoids, and chemical inhibition in Akita mice, a model of insulin-deficient diabetes. METHODS: We profiled two novel FOXO1 inhibitors in reporter gene assays, and hepatocyte gene expression studies, and in vivo pyruvate tolerance test (PTT) for their activity and specificity. We evaluated their glucose-lowering effect in mice rendered insulin-deficient by administration of streptozotocin. RESULTS: We provide evidence that two novel FOXO1 inhibitors, FBT432 and FBT374 have glucose-lowering and gut ß-like cell-inducing properties in mice. FBT432 is also highly effective in combination with a Notch inhibitor in this model. CONCLUSION: The data add to a growing body of evidence suggesting that FOXO1 inhibition be pursued as an alternative treatment to insulin administration in diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Forkhead Box Protein O1 , Animals , Mice , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Forkhead Box Protein O1/antagonists & inhibitors , Glucose/metabolism , Insulin/metabolism , Streptozocin
6.
Mol Metab ; 49: 101187, 2021 07.
Article in English | MEDLINE | ID: mdl-33577983

ABSTRACT

OBJECTIVE: Forkhead box protein O1 (FOXO1) plays a key role in regulating hepatic glucose production, but investigations of FOXO1 inhibition as a potential therapeutic approach have been hampered by a lack of selective chemical inhibitors. By profiling structurally diverse FOXO1 inhibitors, the current study validates FOXO1 as a viable target for the treatment of diabetes. METHODS: Using reporter gene assays, hepatocyte gene expression studies, and in vivo studies in mice, we profiled our leading tool compound 10 and a previously characterized FOXO1 inhibitor, AS1842856 (AS). RESULTS: We show that AS has significant FOXO1-independent effects, as demonstrated by testing in FOXO1-deficient cell lines and animals, while compound 10 is highly selective for FOXO1 both in vitro and in vivo and fails to elicit any effect in genetic models of FOXO1 ablation. Chronic administration of compound 10 improved insulin sensitivity and glucose control in db/db mice without causing weight gain. Furthermore, chronic compound 10 treatment combined with FGF21 led to synergistic glucose lowering in lean, streptozotocin-induced diabetic mice. CONCLUSIONS: We show that the widely used AS compound has substantial off-target activities and that compound 10 is a superior tool molecule for the investigation of FOXO1 function. In addition, we provide preclinical evidence that selective FOXO1 inhibition has potential therapeutic benefits for diabetes as a monotherapy or in combination with FGF21.


Subject(s)
Blood Glucose/metabolism , Fibroblast Growth Factors/metabolism , Forkhead Box Protein O1/metabolism , Animals , Diabetes Mellitus, Type 2/metabolism , Fibroblast Growth Factors/genetics , Forkhead Box Protein O1/drug effects , Forkhead Box Protein O1/genetics , Glucose/metabolism , Hepatocytes/metabolism , Insulin Resistance , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Mice, Knockout , Quinolones/pharmacology
7.
Bioorg Med Chem Lett ; 17(16): 4562-7, 2007 Aug 15.
Article in English | MEDLINE | ID: mdl-17576064

ABSTRACT

Benzo[b]thienyl hydroxamic acids, a novel class of histone deacetylase (HDAC) inhibitors, were identified via a targeted screen of small molecule hydroxamic acids. Various substitutions were explored in the C5- and C6-positions of the benzo[b]thiophene core to characterize SAR and develop optimal inhibitors. It was determined that substitution at the C6-position of the benzo[b]thiophene core with a three-atom spacer yielded optimal HDAC1 inhibition and anti-proliferative activity in murine erythroleukemia (SC-9) cells.


Subject(s)
Histone Deacetylase Inhibitors , Thiophenes/chemistry , Thiophenes/pharmacology , Combinatorial Chemistry Techniques , Computer Simulation , Models, Molecular , Molecular Structure , Structure-Activity Relationship
8.
Bioorg Med Chem Lett ; 17(14): 3969-71, 2007 Jul 15.
Article in English | MEDLINE | ID: mdl-17507219

ABSTRACT

Histone deacetylase (HDAC) inhibitors that target Class I and Class II HDACs are currently in advanced clinical trials for the treatment of cancer. Vorinostat (Zolinza, SAHA) is a hydroxamic acid approved for the treatment of patients with cutaneous T-cell lymphoma who have progressive, persistent or recurrent disease on or following two systemic therapies. As part of an on-going effort to better understand the nature of the HDAC enzyme/inhibitor interaction and design highly effective HDAC inhibitors, we herein report the design, synthesis and HDAC inhibitory activity of a vorinostat-derived series of substrate-based HDAC inhibitors.


Subject(s)
Enzyme Inhibitors/pharmacology , Histone Deacetylase Inhibitors , Hydroxamic Acids/pharmacology , Animals , Mice , Mice, Nude
10.
J Org Chem ; 67(15): 5057-67, 2002 Jul 26.
Article in English | MEDLINE | ID: mdl-12126389

ABSTRACT

Catalysts comprising manganese-porphyrins carrying cyclodextrin binding groups are able to perform hydroxylations with substrate selectivity and regio- and stereoselectivity and high catalytic turnovers. The geometries of the catalyst/substrate complexes override intrinsic substrate reactivities, permitting attack on geometrically accessible saturated carbons of steroids in the presence of secondary carbinol groups and carbon-carbon double bonds, as in enzymatic reactions. Selective hydroxylations of steroid carbon 9 positions are of particular practical interest.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Manganese , Porphyrins , Binding Sites , Catalysis , Cyclodextrins , Hydroxylation , Models, Molecular , Molecular Conformation , Molecular Structure , Oxidation-Reduction , Stereoisomerism , Steroids/chemistry , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...