Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Health Geogr ; 20(1): 5, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33494756

ABSTRACT

BACKGROUND: The health burden in developing world informal settlements often coincides with a lack of spatial data that could be used to guide intervention strategies. Spatial video (SV) has proven to be a useful tool to collect environmental and social data at a granular scale, though the effort required to turn these spatially encoded video frames into maps limits sustainability and scalability. In this paper we explore the use of convolution neural networks (CNN) to solve this problem by automatically identifying disease related environmental risks in a series of SV collected from Haiti. Our objective is to determine the potential of machine learning in health risk mapping for these environments by assessing the challenges faced in adequately training the required classification models. RESULTS: We show that SV can be a suitable source for automatically identifying and extracting health risk features using machine learning. While well-defined objects such as drains, buckets, tires and animals can be efficiently classified, more amorphous masses such as trash or standing water are difficult to classify. Our results further show that variations in the number of image frames selected, the image resolution, and combinations of these can be used to improve the overall model performance. CONCLUSION: Machine learning in combination with spatial video can be used to automatically identify environmental risks associated with common health problems in informal settlements, though there are likely to be variations in the type of data needed for training based on location. Success based on the risk type being identified are also likely to vary geographically. However, we are confident in identifying a series of best practices for data collection, model training and performance in these settings. We also discuss the next step of testing these findings in other environments, and how adding in the simultaneously collected geographic data could be used to create an automatic health risk mapping tool.


Subject(s)
Machine Learning , Neural Networks, Computer , Animals , Data Collection , Haiti , Humans , Risk Factors
2.
Article in English | MEDLINE | ID: mdl-30841596

ABSTRACT

Diffusion of cholera and other diarrheal diseases in an informal settlement is a product of multiple behavioral, environmental and spatial risk factors. One of the most important components is the spatial interconnections among water points, drainage ditches, toilets and the intervening environment. This risk is also longitudinal and variable as water points fluctuate in relation to bacterial contamination. In this paper we consider part of this micro space complexity for three informal settlements in Port au Prince, Haiti. We expand on more typical epidemiological analysis of fecal coliforms at water points, drainage ditches and ocean sites by considering the importance of single point location fluctuation coupled with recording micro-space environmental conditions around each sample site. Results show that spatial variation in enteric disease risk occurs within neighborhoods, and that while certain trends are evident, the degree of individual site fluctuation should question the utility of both cross-sectional and more aggregate analysis. Various factors increase the counts of fecal coliform present, including the type of water point, how water was stored at that water point, and the proximity of the water point to local drainage. Some locations fluctuated considerably between being safe and unsafe on a monthly basis. Next steps to form a more comprehensive contextualized understanding of enteric disease risk in these environments should include the addition of behavioral factors and local insight.


Subject(s)
Cholera/epidemiology , Diarrhea/epidemiology , Cities , Geographic Information Systems , Haiti , Humans , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL