Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Chembiochem ; 22(10): 1743-1749, 2021 05 14.
Article En | MEDLINE | ID: mdl-33534182

Glycoside hydrolases (GHs) are attractive tools for multiple biotechnological applications. In conjunction with their hydrolytic function, GHs can perform transglycosylation under specific conditions. In nature, oligosaccharide synthesis is performed by glycosyltransferases (GTs); however, the industrial use of GTs is limited by their instability in solution. A key difference between GTs and GHs is the flexibility of their binding site architecture. We have used the xylanase from Bacillus circulans (BCX) to study the interplay between active-site flexibility and transglycosylation. Residues of the BCX "thumb" were substituted to increase the flexibility of the enzyme binding site. Replacement of the highly conserved residue P116 with glycine shifted the balance of the BCX enzymatic reaction toward transglycosylation. The effects of this point mutation on the structure and dynamics of BCX were investigated by NMR spectroscopy. The P116G mutation induces subtle changes in the configuration of the thumb and enhances the millisecond dynamics of the active site. Based on our findings, we propose the remodelling of the GH enzymes glycon site flexibility as a strategy to improve the transglycosylation efficiency of these biotechnologically important catalysts.


Bacterial Proteins/metabolism , Endo-1,4-beta Xylanases/metabolism , Bacillus/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites , Catalytic Domain , Endo-1,4-beta Xylanases/chemistry , Endo-1,4-beta Xylanases/genetics , Glycosylation , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Nuclear Magnetic Resonance, Biomolecular , Transition Temperature
2.
Angew Chem Int Ed Engl ; 59(46): 20508-20514, 2020 11 09.
Article En | MEDLINE | ID: mdl-32533782

The single-domain GH11 glycosidase from Bacillus circulans (BCX) is involved in the degradation of hemicellulose, which is one of the most abundant renewable biomaterials in nature. We demonstrate that BCX in solution undergoes minimal structural changes during turnover. NMR spectroscopy results show that the rigid protein matrix provides a frame for fast substrate binding in multiple conformations, accompanied by slow conversion, which is attributed to an enzyme-induced substrate distortion. A model is proposed in which the rigid enzyme takes advantage of substrate flexibility to induce a conformation that facilitates the acyl formation step of the hydrolysis reaction.


Glycoside Hydrolases/metabolism , Hydrolysis , Kinetics , Ligands , Models, Molecular , Protein Binding
3.
J Lipid Res ; 59(12): 2262-2276, 2018 12.
Article En | MEDLINE | ID: mdl-30279220

Glycosyl hydrolases (GHs) are carbohydrate-active enzymes that hydrolyze a specific ß-glycosidic bond in glycoconjugate substrates; ß-glucosidases degrade glucosylceramide, a ubiquitous glycosphingolipid. GHs are grouped into structurally similar families that themselves can be grouped into clans. GH1, GH5, and GH30 glycosidases belong to clan A hydrolases with a catalytic (ß/α)8 TIM barrel domain, whereas GH116 belongs to clan O with a catalytic (α/α)6 domain. In humans, GH abnormalities underlie metabolic diseases. The lysosomal enzyme glucocerebrosidase (family GH30), deficient in Gaucher disease and implicated in Parkinson disease etiology, and the cytosol-facing membrane-bound glucosylceramidase (family GH116) remove the terminal glucose from the ceramide lipid moiety. Here, we compare enzyme differences in fold, action, dynamics, and catalytic domain stabilization by binding site occupancy. We also explore other glycosidases with reported glycosylceramidase activity, including human cytosolic ß-glucosidase, intestinal lactase-phlorizin hydrolase, and lysosomal galactosylceramidase. Last, we describe the successful translation of research to practice: recombinant glycosidases and glucosylceramide metabolism modulators are approved drug products (enzyme replacement therapies). Activity-based probes now facilitate the diagnosis of enzyme deficiency and screening for compounds that interact with the catalytic pocket of glycosidases. Future research may deepen the understanding of the functional variety of these enzymes and their therapeutic potential.


Glucosylceramidase/chemistry , Glucosylceramidase/metabolism , Animals , Cerebrosides/metabolism , Gaucher Disease/metabolism , Glycoconjugates/metabolism , Glycolipids/metabolism , Humans , Lactase-Phlorizin Hydrolase/metabolism , Parkinson Disease/metabolism
4.
Sci Transl Med ; 10(459)2018 09 19.
Article En | MEDLINE | ID: mdl-30232228

Congenital erythropoietic porphyria is a rare autosomal recessive disease produced by deficient activity of uroporphyrinogen III synthase, the fourth enzyme in the heme biosynthetic pathway. The disease affects many organs, can be life-threatening, and currently lacks curative treatments. Inherited mutations most commonly reduce the enzyme's stability, altering its homeostasis and ultimately blunting intracellular heme production. This results in uroporphyrin by-product accumulation in the body, aggravating associated pathological symptoms such as skin photosensitivity and disfiguring phototoxic cutaneous lesions. We demonstrated that the synthetic marketed antifungal ciclopirox binds to the enzyme, stabilizing it. Ciclopirox targeted the enzyme at an allosteric site distant from the active center and did not affect the enzyme's catalytic role. The drug restored enzymatic activity in vitro and ex vivo and was able to alleviate most clinical symptoms of congenital erythropoietic porphyria in a genetic mouse model of the disease at subtoxic concentrations. Our findings establish a possible line of therapeutic intervention against congenital erythropoietic porphyria, which is potentially applicable to most of deleterious missense mutations causing this devastating disease.


Ciclopirox/therapeutic use , Drug Repositioning , Porphyria, Erythropoietic/drug therapy , Allosteric Site , Animals , Biophysical Phenomena , Cell Line , Ciclopirox/pharmacokinetics , Disease Models, Animal , Homeostasis , Mice , Phenotype , Porphyria, Erythropoietic/enzymology , Porphyria, Erythropoietic/pathology , Uroporphyrinogen III Synthetase/antagonists & inhibitors , Uroporphyrinogen III Synthetase/chemistry , Uroporphyrinogen III Synthetase/metabolism
5.
ACS Chem Biol ; 12(7): 1830-1841, 2017 07 21.
Article En | MEDLINE | ID: mdl-28485919

Glucocerebrosidase (GBA) is a lysosomal ß-glucosidase that degrades glucosylceramide. Its deficiency results in Gaucher disease (GD). We examined the effects of active site occupancy of GBA on its structural stability. For this, we made use of cyclophellitol-derived activity-based probes (ABPs) that bind irreversibly to the catalytic nucleophile (E340), and for comparison, we used the potent reversible inhibitor isofagomine. We demonstrate that cyclophellitol ABPs improve the stability of GBA in vitro, as revealed by thermodynamic measurements (Tm increase by 21 °C), and introduce resistance to tryptic digestion. The stabilizing effect of cell-permeable cyclophellitol ABPs is also observed in intact cultured cells containing wild-type GBA, N370S GBA (labile in lysosomes), and L444P GBA (exhibits impaired ER folding): all show marked increases in lysosomal forms of GBA molecules upon exposure to ABPs. The same stabilization effect is observed for endogenous GBA in the liver of wild-type mice injected with cyclophellitol ABPs. Stabilization effects similar to those observed with ABPs were also noted at high concentrations of the reversible inhibitor isofagomine. In conclusion, we provide evidence that the increase in cellular levels of GBA by ABPs and by the reversible inhibitor is in part caused by their ability to stabilize GBA folding, which increases the resistance of GBA against breakdown by lysosomal proteases. These effects are more pronounced in the case of the amphiphilic ABPs, presumably due to their high lipophilic potential, which may promote further structural compactness of GBA through hydrophobic interactions. Our study provides further rationale for the design of chaperones for GBA to ameliorate Gaucher disease.


Catalytic Domain/physiology , Enzyme Stability/physiology , Glucosylceramidase/chemistry , Glucosylceramidase/metabolism , Imino Pyranoses/metabolism , Animals , Binding Sites , Enzyme Stability/drug effects , Imino Pyranoses/chemistry , Imino Pyranoses/pharmacology , Liver/drug effects , Liver/enzymology , Mice , Molecular Structure , Temperature
6.
Biochemistry ; 55(34): 4823-35, 2016 08 30.
Article En | MEDLINE | ID: mdl-27455091

Small compound active site interactors receive considerable attention for their ability to positively influence the fold of glycosidases. Endoglycoceramidase II (EGCII) from Rhodococcus sp. is an endo-ß-glucosidase releasing the complete glycan from ceramide in glycosphingolipids. Cleavage of the ß-glycosidic linkage between glucose and ceramide is also catalyzed by glucocerebrosidase (GBA), the exo-ß-glucosidase deficient in Gaucher disease. We demonstrate that established ß-glucoside-configured cyclophellitol-type activity-based probes (ABPs) for GBA also are effective, mechanism-based, and irreversible inhibitors of EGCII. The stability of EGCII is markedly enhanced by formation of covalent complexes with cyclophellitol ABPs substituted with hydrophobic moieties, as evidenced by an increased melting temperature, resistance against tryptic digestion, changes in (15)N-(1)H transverse relaxation optimized spectroscopy spectra of the [(15)N]Leu-labeled enzyme, and relative hydrophobicity as determined by 8-anilino-1-naphthalenesulfonic acid fluorescence. The stabilization of EGCII conformation correlates with the shape and hydrophobicity of the substituents of the ABPs. We conclude that the amphipathic active site binders with aliphatic moieties act as a "hydrophobic zipper" on the flexible EGCII protein structure.


Bacterial Proteins/chemistry , Glycoside Hydrolases/chemistry , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain , Cyclohexanols/chemistry , Enzyme Stability , Gaucher Disease/enzymology , Glucosylceramidase/chemistry , Glucosylceramidase/genetics , Glucosylceramidase/metabolism , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Molecular Probes/chemistry , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Rhodococcus/enzymology , Rhodococcus/genetics , Structural Homology, Protein
7.
Hum Mol Genet ; 23(21): 5805-13, 2014 Nov 01.
Article En | MEDLINE | ID: mdl-24925316

Congenital erythropoietic porphyria (CEP) results from a deficiency in uroporphyrinogen III synthase enzyme (UROIIIS) activity that ultimately stems from deleterious mutations in the uroS gene. C73 is a hotspot for these mutations and a C73R substitution, which drastically reduces the enzyme activity and stability, is found in almost one-third of all reported CEP cases. Here, we have studied the structural basis, by which mutations in this hotspot lead to UROIIIS destabilization. First, a strong interdependency is observed between the volume of the side chain at position 73 and the folded protein. Moreover, there is a correlation between the in vitro half-life of the mutated proteins and their expression levels in eukaryotic cell lines. Molecular modelling was used to rationalize the results, showing that the mutation site is coupled to the hinge region separating the two domains. Namely, mutations at position 73 modulate the inter-domain closure and ultimately affect protein stability. By incorporating residues capable of interacting with R73 to stabilize the hinge region, catalytic activity was fully restored and a moderate increase in the kinetic stability of the enzyme was observed. These results provide an unprecedented rationale for a destabilizing missense mutation and pave the way for the effective design of molecular chaperones as a therapy against CEP.


Homeostasis , Porphyria, Erythropoietic/metabolism , Protein Engineering , Uroporphyrinogen III Synthetase/metabolism , Amino Acid Substitution , Catalysis , Enzyme Activation , Enzyme Stability , Humans , Intracellular Space/metabolism , Kinetics , Models, Molecular , Mutation , Porphyria, Erythropoietic/enzymology , Porphyria, Erythropoietic/genetics , Protein Conformation , Uroporphyrinogen III Synthetase/chemistry , Uroporphyrinogen III Synthetase/genetics
...