Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Front Integr Neurosci ; 17: 1125712, 2023.
Article in English | MEDLINE | ID: mdl-37251736

ABSTRACT

Background: One factor which influences the speech intelligibility of cochlear implant (CI) users is the number and the extent of the functionality of spiral ganglion neurons (SGNs), referred to as "cochlear health." To explain the interindividual variability in speech perception of CI users, a clinically applicable estimate of cochlear health could be insightful. The change in the slope of the electrically evoked compound action potentials (eCAP), amplitude growth function (AGF) as a response to increased interphase gap (IPG) (IPGEslope) has been introduced as a potential measure of cochlear health. Although this measure has been widely used in research, its relationship to other parameters requires further investigation. Methods: This study investigated the relationship between IPGEslope, demographics and speech intelligibility by (1) considering the relative importance of each frequency band to speech perception, and (2) investigating the effect of the stimulus polarity of the stimulating pulse. The eCAPs were measured in three different conditions: (1) Forward masking with anodic-leading (FMA) pulse, (2) Forward masking with cathodic-leading (FMC) pulse, and (3) with alternating polarity (AP). This allowed the investigation of the effect of polarity on the diagnosis of cochlear health. For an accurate investigation of the correlation between IPGEslope and speech intelligibility, a weighting function was applied to the measured IPGEslopes on each electrode in the array to consider the relative importance of each frequency band for speech perception. A weighted Pearson correlation analysis was also applied to compensate for the effect of missing data by giving higher weights to the ears with more successful IPGEslope measurements. Results: A significant correlation was observed between IPGEslope and speech perception in both quiet and noise for between-subject data especially when the relative importance of frequency bands was considered. A strong and significant correlation was also observed between IPGEslope and age when stimulation was performed with cathodic-leading pulses but not for the anodic-leading pulse condition. Conclusion: Based on the outcome of this study it can be concluded that IPGEslope has potential as a relevant clinical measure indicative of cochlear health and its relationship to speech intelligibility. The polarity of the stimulating pulse could influence the diagnostic potential of IPGEslope.

2.
J Assoc Res Otolaryngol ; 23(6): 721-738, 2022 12.
Article in English | MEDLINE | ID: mdl-35948695

ABSTRACT

The electrically evoked compound action potential (eCAP) is a direct measure of the responsiveness of the auditory nerve to electrical stimulation from a cochlear implant (CI). CIs offer a unique opportunity to study the auditory nerve's electrophysiological behavior in individual human subjects over time. In order to understand exactly how the eCAP relates to the condition of the auditory nerve, it is crucial to compare changes in the eCAP over time in a controlled model of deafness-induced auditory nerve degeneration. In the present study, 10 normal-hearing young adult guinea pigs were implanted and deafened 4 weeks later, so that the effect of deafening could be monitored within-subject over time. Following implantation, but before deafening, most examined eCAP characteristics significantly changed, suggesting increasing excitation efficacy (e.g., higher maximum amplitude, lower threshold, shorter latency). Conversely, inter-phase gap (IPG) effects on these measures - within-subject difference measures that have been shown to correlate well with auditory nerve survival - did not vary for most eCAP characteristics. After deafening, we observed an initial increase in excitability (steeper slope of the eCAP amplitude growth function (AGF), lower threshold, shorter latency and peak width) which typically returned to normal-hearing levels within a week, after which a slower process, probably reflecting spiral ganglion cell loss, took place over the remaining 6 weeks (e.g., decrease in maximum amplitude, AGF slope, peak area, and IPG effect for AGF slope; increase in IPG effect for latency). Our results suggest that gradual changes in peak width and latency reflect the rate of neural degeneration, while peak area, maximum amplitude, and AGF slope reflect neural population size, which may be valuable for clinical diagnostics.


Subject(s)
Cochlear Implantation , Cochlear Implants , Young Adult , Guinea Pigs , Humans , Animals , Action Potentials/physiology , Evoked Potentials , Cochlear Nerve/physiology , Spiral Ganglion/physiology , Cochlear Implantation/methods , Electric Stimulation , Evoked Potentials, Auditory/physiology
3.
Front Immunol ; 9: 223, 2018.
Article in English | MEDLINE | ID: mdl-29487598

ABSTRACT

The human inner ear, which is segregated by a blood/labyrinth barrier, contains resident macrophages [CD163, ionized calcium-binding adaptor molecule 1 (IBA1)-, and CD68-positive cells] within the connective tissue, neurons, and supporting cells. In the lateral wall of the cochlea, these cells frequently lie close to blood vessels as perivascular macrophages. Macrophages are also shown to be recruited from blood-borne monocytes to damaged and dying hair cells induced by noise, ototoxic drugs, aging, and diphtheria toxin-induced hair cell degeneration. Precise monitoring may be crucial to avoid self-targeting. Macrophage biology has recently shown that populations of resident tissue macrophages may be fundamentally different from circulating macrophages. We removed uniquely preserved human cochleae during surgery for treating petroclival meningioma compressing the brain stem, after ethical consent. Molecular and cellular characterization using immunofluorescence with antibodies against IBA1, TUJ1, CX3CL1, and type IV collagen, and super-resolution structured illumination microscopy (SR-SIM) were made together with transmission electron microscopy. The super-resolution microscopy disclosed remarkable phenotypic variants of IBA1 cells closely associated with the spiral ganglion cells. Monitoring cells adhered to neurons with "synapse-like" specializations and protrusions. Active macrophages migrated occasionally nearby damaged hair cells. Results suggest that the human auditory nerve is under the surveillance and possible neurotrophic stimulation of a well-developed resident macrophage system. It may be alleviated by the non-myelinated nerve soma partly explaining why, in contrary to most mammals, the human's auditory nerve is conserved following deafferentiation. It makes cochlear implantation possible, for the advantage of the profoundly deaf. The IBA1 cells may serve additional purposes such as immune modulation, waste disposal, and nerve regeneration. Their role in future stem cell-based therapy needs further exploration.


Subject(s)
Cochlea/immunology , DNA-Binding Proteins/immunology , Macrophages/immunology , Spiral Ganglion/immunology , Aged , Calcium-Binding Proteins , Cell Movement/immunology , Cochlea/cytology , Cochlea/transplantation , Cochlea/ultrastructure , Cochlear Implantation , DNA-Binding Proteins/metabolism , Deafness/surgery , Female , Hair Cells, Auditory/immunology , Hair Cells, Auditory/ultrastructure , Humans , Immunohistochemistry/methods , Macrophages/metabolism , Male , Microfilament Proteins , Microscopy, Electron, Transmission , Middle Aged , Spiral Ganglion/cytology , Spiral Ganglion/ultrastructure
4.
Mol Neurobiol ; 55(1): 173-186, 2018 01.
Article in English | MEDLINE | ID: mdl-28840488

ABSTRACT

Cochlear implantation (CI) surgery is a very successful technique, performed on more than 300,000 people worldwide. However, since the challenge resides in obtaining an accurate surgical planning, computational models are considered to provide such accurate tools. They allow us to plan and simulate beforehand surgical procedures in order to maximally optimize surgery outcomes, and consequently provide valuable information to guide pre-operative decisions. The aim of this work is to develop and validate computational tools to completely assess the patient-specific functional outcome of the CI surgery. A complete automatic framework was developed to create and assess computationally CI models, focusing on the neural response of the auditory nerve fibers (ANF) induced by the electrical stimulation of the implant. The framework was applied to evaluate the effects of ANF degeneration and electrode intra-cochlear position on nerve activation. Results indicate that the intra-cochlear positioning of the electrode has a strong effect on the global performance of the CI. Lateral insertion provides better neural responses in case of peripheral process degeneration, and it is recommended, together with optimized intensity levels, in order to preserve the internal structures. Overall, the developed automatic framework provides an insight into the global performance of the implant in a patient-specific way. This enables to further optimize the functional performance and helps to select the best CI configuration and treatment strategy for a given patient.


Subject(s)
Cochlear Implantation/methods , Cochlear Implantation/trends , Cochlear Implants/trends , Cochlear Nerve/physiology , Computer Simulation/trends , Cochlear Implantation/instrumentation , Electric Stimulation/methods , Humans
5.
Otol Neurotol ; 38(8): e224-e231, 2017 09.
Article in English | MEDLINE | ID: mdl-28806330

ABSTRACT

: Cochlear implants (CI) restore functional hearing in the majority of deaf patients. Despite the tremendous success of these devices, some limitations remain. The bottleneck for optimal electrical stimulation with CI is caused by the anatomical gap between the electrode array and the auditory neurons in the inner ear. As a consequence, current devices are limited through 1) low frequency resolution, hence sub-optimal sound quality and 2), large stimulation currents, hence high energy consumption (responsible for significant battery costs and for impeding the development of fully implantable systems). A recently completed, multinational and interdisciplinary project called NANOCI aimed at overcoming current limitations by creating a gapless interface between auditory nerve fibers and the cochlear implant electrode array. This ambitious goal was achieved in vivo by neurotrophin-induced attraction of neurites through an intracochlear gel-nanomatrix onto a modified nanoCI electrode array located in the scala tympani of deafened guinea pigs. Functionally, the gapless interface led to lower stimulation thresholds and a larger dynamic range in vivo, and to reduced stimulation energy requirement (up to fivefold) in an in vitro model using auditory neurons cultured on multi-electrode arrays. In conclusion, the NANOCI project yielded proof of concept that a gapless interface between auditory neurons and cochlear implant electrode arrays is feasible. These findings may be of relevance for the development of future CI systems with better sound quality and performance and lower energy consumption. The present overview/review paper summarizes the NANOCI project history and highlights achievements of the individual work packages.


Subject(s)
Cochlear Implantation/instrumentation , Cochlear Implants , Electric Stimulation/instrumentation , Nanotechnology/instrumentation , Animals , Cochlea/physiology , Cochlear Implants/trends , Guinea Pigs , Hearing/physiology , Humans , Neurons/physiology
6.
Front Mol Neurosci ; 10: 239, 2017.
Article in English | MEDLINE | ID: mdl-28848383

ABSTRACT

Background: The cochlea produces an electric field potential essential for hair cell transduction and hearing. This biological "battery" is situated in the lateral wall of the cochlea and contains molecular machinery that secretes and recycles K+ ions. Its functioning depends on junctional proteins that restrict the para-cellular escape of ions. The tight junction protein Claudin-11 has been found to be one of the major constituents of this barrier that maintains ion gradients (Gow et al., 2004; Kitajiri et al., 2004a). We are the first to elucidate the human Claudin-11 framework and the associated ion transport machinery using super-resolution fluorescence illumination microscopy (SR-SIM). Methods: Archival cochleae obtained during meningioma surgery were used for SR-SIM together with transmission electron microscopy after ethical consent. Results: Claudin-11-expressing cells formed parallel tight junction lamellae that insulated the epithelial syncytium of the stria vascularis and extended to the suprastrial region. Intercellular gap junctions were found between the barrier cells and fibrocytes. Conclusion: Transmission electron microscopy, confocal microscopy and SR-SIM revealed exclusive cell specialization in the various subdomains of the lateral wall of the human cochlea. The Claudin-11-expressing cells exhibited both conductor and isolator characteristics, and these micro-porous separators may selectively mediate the movement of charged units to the intrastrial space in a manner that is analogous to a conventional electrochemical "battery." The function and relevance of this battery for the development of inner ear disease are discussed.

7.
J Neural Eng ; 13(1): 016011, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26656212

ABSTRACT

OBJECTIVE: Cochlear implants (CIs) have become the gold standard treatment for deafness. These neuroprosthetic devices feature a linear electrode array, surgically inserted into the cochlea, and function by directly stimulating the auditory neurons located within the spiral ganglion, bypassing lost or not-functioning hair cells. Despite their success, some limitations still remain, including poor frequency resolution and high-energy consumption. In both cases, the anatomical gap between the electrode array and the spiral ganglion neurons (SGNs) is believed to be an important limiting factor. The final goal of the study is to characterize response profiles of SGNs growing in intimate contact with an electrode array, in view of designing novel CI devices and stimulation protocols, featuring a gapless interface with auditory neurons. APPROACH: We have characterized SGN responses to extracellular stimulation using multi-electrode arrays (MEAs). This setup allows, in our view, to optimize in vitro many of the limiting interface aspects between CIs and SGNs. MAIN RESULTS: Early postnatal mouse SGN explants were analyzed after 6-18 days in culture. Different stimulation protocols were compared with the aim to lower the stimulation threshold and the energy needed to elicit a response. In the best case, a four-fold reduction of the energy was obtained by lengthening the biphasic stimulus from 40 µs to 160 µs. Similarly, quasi monophasic pulses were more effective than biphasic pulses and the insertion of an interphase gap moderately improved efficiency. Finally, the stimulation with an external electrode mounted on a micromanipulator showed that the energy needed to elicit a response could be reduced by a factor of five with decreasing its distance from 40 µm to 0 µm from the auditory neurons. SIGNIFICANCE: This study is the first to show electrical activity of SGNs on MEAs. Our findings may help to improve stimulation by and to reduce energy consumption of CIs and thereby contribute to the development of fully implantable devices with better auditory resolution in the future.


Subject(s)
Action Potentials/physiology , Cochlear Implants , Microarray Analysis/instrumentation , Microelectrodes , Spiral Ganglion/cytology , Spiral Ganglion/physiology , Animals , Electric Stimulation Therapy/instrumentation , Equipment Design , Equipment Failure Analysis , Mice , Mice, Inbred C57BL , Reproducibility of Results , Sensitivity and Specificity
10.
Invest Ophthalmol Vis Sci ; 52(8): 5995-6003, 2011 Jul 29.
Article in English | MEDLINE | ID: mdl-21693599

ABSTRACT

PURPOSE: The perception of 11 persons blinded by hereditary retinal degeneration elicited by a subretinally implanted 16-electrode array used for light-independent direct stimulation of the retina is described. This device is part of the Tübingen retina implant, which also employs a light-sensitive, multiphotodiode array (MPDA). The ability to reliably recognize complex spatial percepts was investigated. METHODS: Eleven blind volunteers received implants and participated in standardized psychophysical tests investigating the size and shape of perceptions elicited by single-electrode activation, multiple-electrode activation, and activation of compound patterns such as simplified letters. RESULTS: Visual percepts were elicited reliably in 8 of 11 patients. On single-electrode activation, percepts were generally described as round spots of light of distinguishable localization in the visual field. On activation of a pattern of electrodes, percepts matched that pattern when electrodes were activated sequentially. Patterns such as horizontal or vertical bars were identified reliably; the most recent participant was able to recognize simplified letters presented on the 16-electrode array. The smallest distance between sites of concurrent retinal stimulation still yielding discernible spots of light was assessed to be 280 µm, corresponding to a logMAR of 1.78. CONCLUSIONS: Subretinal electric stimulation can yield reliable, predictable percepts. Patterned perception is feasible, enabling blind persons to recognize shapes and discriminate different letters. Stimulation paradigms must be optimized, to further increase spatial resolution, demanding a better understanding of physical and biological effects of single versus repetitive stimulation (ClinicalTrials.gov number, NCT00515814).


Subject(s)
Blindness/surgery , Pattern Recognition, Visual , Retinal Dystrophies/surgery , Space Perception , Visual Prosthesis , Adult , Blindness/rehabilitation , Electrodes, Implanted , Humans , Male , Middle Aged , Motion Perception , Orientation , Prosthesis Design , Prosthesis Implantation/methods , Psychophysics , Retinal Dystrophies/rehabilitation
11.
Orv Hetil ; 152(14): 537-45, 2011 Apr 03.
Article in Hungarian | MEDLINE | ID: mdl-21436016

ABSTRACT

Up until now there has been no available treatment for diseases causing the permanent impairment of retinal photoreceptors. Currently the development of the retinal prostheses is the earliest to promise a result that can be implemented in the clinical treatment of these patients. Implants with different operating principles and in various stages of progress are presented in details, highlighting the characteristics, as well as the Hungarian aspects of the development. This survey intends to provide an overview on retinal prostheses, implantable in case of degenerative diseases of the retina, by reviewing and assessing the papers published in relevant journals and based on personal experience. Developments in microelectronics in recent years made it possible and proved to be feasible to replace the degenerated elements in the retina with electrical stimulation. Multiple comparable approaches are running simultaneously. Two types of these implants are directly stimulating the remaining living cells in the retina. Hitherto the finest resolution has been achieved with the subretinal implants. Although the epiretinal implant offer lower resolution, but requires shorter surgery for implantation. Retinal implants in certain retinal diseases are proved to be capable of generating vision-like experiences. A number of types of retinal implants can be expected to appear in clinical practice a few years after the successful conclusion of clinical trials.


Subject(s)
Electric Stimulation , Photoreceptor Cells, Vertebrate , Retinal Degeneration/physiopathology , Retinal Degeneration/surgery , Vision, Ocular , Visual Prosthesis , Clinical Trials as Topic , Electric Stimulation/instrumentation , Electric Stimulation/methods , Electrodes, Implanted , Equipment Design , Germany , Humans , Hungary , Microelectrodes , United States
12.
Proc Biol Sci ; 278(1711): 1489-97, 2011 May 22.
Article in English | MEDLINE | ID: mdl-21047851

ABSTRACT

A light-sensitive, externally powered microchip was surgically implanted subretinally near the macular region of volunteers blind from hereditary retinal dystrophy. The implant contains an array of 1500 active microphotodiodes ('chip'), each with its own amplifier and local stimulation electrode. At the implant's tip, another array of 16 wire-connected electrodes allows light-independent direct stimulation and testing of the neuron-electrode interface. Visual scenes are projected naturally through the eye's lens onto the chip under the transparent retina. The chip generates a corresponding pattern of 38 × 40 pixels, each releasing light-intensity-dependent electric stimulation pulses. Subsequently, three previously blind persons could locate bright objects on a dark table, two of whom could discern grating patterns. One of these patients was able to correctly describe and name objects like a fork or knife on a table, geometric patterns, different kinds of fruit and discern shades of grey with only 15 per cent contrast. Without a training period, the regained visual functions enabled him to localize and approach persons in a room freely and to read large letters as complete words after several years of blindness. These results demonstrate for the first time that subretinal micro-electrode arrays with 1500 photodiodes can create detailed meaningful visual perception in previously blind individuals.


Subject(s)
Electrodes, Implanted , Implants, Experimental , Reading , Retina/surgery , Retinal Dystrophies/surgery , Sensory Aids , Visual Perception/physiology , Adult , Female , Humans , Light , Male
13.
Article in English | MEDLINE | ID: mdl-21096939

ABSTRACT

Our group has developed a subretinal microphotodiode array for restoration of vision. In a clinical pilot study the array has been implanted in 11 patients suffering from photoreceptor degenerations. Here we present promising results from some of those patients where the retinal tissue above the chip was functional and the implant fulfilled its expected function. A spatial resolution of approximately 0.3 cycles/degree could be achieved with fine stripe patterns. In one subject where the implant had been placed directly under the macular region of the retina a visual acuity of 20/1000 could be measured. Artificially restored visual acuity of this quality has not been reported previously. Finally, we present images illustrating an approximation of how the visual perceptions might have appeared to the subjects, based on a mathematical model and patient reports.


Subject(s)
Electrodes, Implanted , Pattern Recognition, Visual/physiology , Recovery of Function/physiology , Retina/physiopathology , Vision, Ocular/physiology , Humans , Microelectrodes , Ophthalmoscopes , Photic Stimulation , Prosthesis Implantation
14.
J Biomed Opt ; 13(4): 041311, 2008.
Article in English | MEDLINE | ID: mdl-19021319

ABSTRACT

In vivo molecular fluorescence tomography of brain disease mouse models has two very specific demands on the optical setup: the use of pigmented furry mice does not allow for a purely noncontact setup, and a high spatial accuracy is required on the dorsal side of the animal due to the location of the brain. We present an optimized setup and tomographic scheme that meet these criteria through a combined CW reflectance-transmittance fiber illumination approach and a charge-coupled device contactless detection scheme. To consider the anatomy of the mouse head and take short source detector separations into account, the forward problem was evaluated by a Monte Carlo simulation input with a magnetic resonance image of the animal. We present an evaluation of reconstruction performance of the setup under three different condition. (i) Using a simulated dataset, with well-defined optical properties and low noise, the reconstructed position accuracy is below 0.5 mm. (ii) Using experimental data on a cylindrical tissue-simulating phantom with well-defined optical properties, a spatial accuracy of about 1 mm was found. (iii) Finally, on an animal model with a fluorescent inclusion in the brain, the target position was reconstructed with an accuracy of 1.6 mm.


Subject(s)
Brain/cytology , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Microscopy, Fluorescence/methods , Tomography, Optical/methods , Animals , Mice
15.
J Cereb Blood Flow Metab ; 27(6): 1262-79, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17200678

ABSTRACT

Functional hemodynamic responses are the composite results of underlying variations in cerebral oxygen consumption and the dilation of arterial vessels after neuronal activity. The development of biophysically based models of the cerebral vasculature allows the separation of the neuro-metabolic and neuro-vascular influences on measurable hemodynamic signals such as functional magnetic resonance imaging or optical imaging. We describe a multicompartment model of the vascular and oxygen transport dynamics associated with stimulus-driven neuronal activation. Our model offers several unique features compared with previous formulations such as the ability to estimate baseline blood flow, volume, and oxygen consumption from functional data. In addition, we introduce a capillary compliance model, arterial and venous oxygen permeability, and model the dynamics of extravascular tissue oxygenation. We apply this model to multimodal optical spectroscopic and laser speckle imaging of the rat somato-sensory cortex during nine conditions of whisker stimulation. By fitting the model using a psuedo-Bayesian framework to incorporate multimodal observations, we estimate baseline blood flow to be 94 (+/-15) mL/100 g min and baseline oxygen consumption to be 6.7 (+/-1.3) mL O(2)/100 g min. We calculate parametric, linear increases in arterial dilation (R(2)=0.96) and CMRO(2) (R(2)=0.87) responses over the nine conditions. Other parameters estimated by the model include vascular transit time and volume reserve, oxygen content, saturation, diffusivity rate constants, and partial pressure of oxygen in the vascular compartments and in the extravascular tissue. Finally, we compare this model to earlier work and find that the multicompartment model more accurately describes the observed oxygenation changes when compared with a single compartment version.


Subject(s)
Brain/blood supply , Models, Cardiovascular , Oxygen/metabolism , Vasodilation , Arteries , Bayes Theorem , Brain Chemistry , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...