Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 15: 1377130, 2024.
Article in English | MEDLINE | ID: mdl-38694873

ABSTRACT

Introduction: Nellore cattle (Bos taurus indicus) is the main beef cattle breed raised in Brazil. This breed is well adapted to tropical conditions and, more recently, has experienced intensive genetic selection for multiple performance traits. Over the past 43 years, an experimental breeding program has been developed in the Institute of Animal Science (IZ, Sertaozinho, SP, Brazil), which resulted in three differentially-selected lines known as Nellore Control (NeC), Nellore Selection (NeS), and Nellore Traditional (NeT). The primary goal of this selection experiment was to determine the response to selection for yearling weight (YW) and residual feed intake (RFI) on Nellore cattle. The main objectives of this study were to: 1) identify copy number variation (CNVs) in Nellore cattle from three selection lines; 2) identify and characterize CNV regions (CNVR) on these three lines; and 3) perform functional enrichment analyses of the CNVR identified. Results: A total of 14,914 unique CNVs and 1,884 CNVRs were identified when considering all lines as a single population. The CNVRs were non-uniformly distributed across the chromosomes of the three selection lines included in the study. The NeT line had the highest number of CNVRs (n = 1,493), followed by the NeS (n = 823) and NeC (n = 482) lines. The CNVRs covered 23,449,890 bp (0.94%), 40,175,556 bp (1.61%), and 63,212,273 bp (2.54%) of the genome of the NeC, NeS, and NeT lines, respectively. Two CNVRs were commonly identified between the three lines, and six, two, and four exclusive regions were identified for NeC, NeS, and NeT, respectively. All the exclusive regions overlap with important genes, such as SMARCD3, SLC15A1, and MAPK1. Key biological processes associated with the candidate genes were identified, including pathways related to growth and metabolism. Conclusion: This study revealed large variability in CNVs and CNVRs across three Nellore lines differentially selected for YW and RFI. Gene annotation and gene ontology analyses of the exclusive CNVRs to each line revealed specific genes and biological processes involved in the expression of growth and feed efficiency traits. These findings contribute to the understanding of the genetic mechanisms underlying the phenotypic differences among the three Nellore selection lines.

2.
BMC Genomics ; 25(1): 54, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38212678

ABSTRACT

BACKGROUND: Feeding costs represent the largest expenditures in beef production. Therefore, the animal efficiency in converting feed in high-quality protein for human consumption plays a major role in the environmental impact of the beef industry and in the beef producers' profitability. In this context, breeding animals for improved feed efficiency through genomic selection has been considered as a strategic practice in modern breeding programs around the world. Copy number variation (CNV) is a less-studied source of genetic variation that can contribute to phenotypic variability in complex traits. In this context, this study aimed to: (1) identify CNV and CNV regions (CNVRs) in the genome of Nellore cattle (Bos taurus indicus); (2) assess potential associations between the identified CNVR and weaning weight (W210), body weight measured at the time of selection (WSel), average daily gain (ADG), dry matter intake (DMI), residual feed intake (RFI), time spent at the feed bunk (TF), and frequency of visits to the feed bunk (FF); and, (3) perform functional enrichment analyses of the significant CNVR identified for each of the traits evaluated. RESULTS: A total of 3,161 CNVs and 561 CNVRs ranging from 4,973 bp to 3,215,394 bp were identified. The CNVRs covered up to 99,221,894 bp (3.99%) of the Nellore autosomal genome. Seventeen CNVR were significantly associated with dry matter intake and feeding frequency (number of daily visits to the feed bunk). The functional annotation of the associated CNVRs revealed important candidate genes related to metabolism that may be associated with the phenotypic expression of the evaluated traits. Furthermore, Gene Ontology (GO) analyses revealed 19 enrichment processes associated with FF. CONCLUSIONS: A total of 3,161 CNVs and 561 CNVRs were identified and characterized in a Nellore cattle population. Various CNVRs were significantly associated with DMI and FF, indicating that CNVs play an important role in key biological pathways and in the phenotypic expression of feeding behavior and growth traits in Nellore cattle.


Subject(s)
DNA Copy Number Variations , Genome-Wide Association Study , Humans , Cattle/genetics , Animals , Phenotype , Eating/genetics , Feeding Behavior , Animal Feed/analysis
3.
BMC Genomics ; 25(1): 107, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267854

ABSTRACT

BACKGROUND: Junipers (Juniperus spp.) are woody native, invasive plants that have caused encroachment problems in the U.S. western rangelands, decreasing forage productivity and biodiversity. A potential solution to this issue is using goats in targeted grazing programs. However, junipers, which grow in dry and harsh environmental conditions, use chemical defense mechanisms to deter herbivores. Therefore, genetically selecting goats for increased juniper consumption is of great interest for regenerative rangeland management. In this context, the primary objectives of this study were to: 1) estimate variance components and genetic parameters for predicted juniper consumption in divergently selected Angora (ANG) and composite Boer x Spanish (BS) goat populations grazing on Western U.S. rangelands; and 2) to identify genomic regions, candidate genes, and biological pathways associated with juniper consumption in these goat populations. RESULTS: The average juniper consumption was 22.4% (± 18.7%) and 7.01% (± 12.1%) in the BS and ANG populations, respectively. The heritability estimates (realized heritability within parenthesis) for juniper consumption were 0.43 ± 0.02 (0.34 ± 0.06) and 0.19 ± 0.03 (0.13 ± 0.03) in BS and ANG, respectively, indicating that juniper consumption can be increased through genetic selection. The repeatability values of predicted juniper consumption were 0.45 for BS and 0.28 for ANG. A total of 571 significant SNP located within or close to 231 genes in BS, and 116 SNP related to 183 genes in ANG were identified based on the genome-wide association analyses. These genes are primarily associated with biological pathways and gene ontology terms related to olfactory receptors, intestinal absorption, and immunity response. CONCLUSIONS: These findings suggest that juniper consumption is a heritable trait of polygenic inheritance influenced by multiple genes of small effects. The genetic parameters calculated indicate that juniper consumption can be genetically improved in both goat populations.


Subject(s)
Juniperus , Animals , Juniperus/genetics , Goats/genetics , Genome-Wide Association Study , Spectroscopy, Near-Infrared , Genetic Background
SELECTION OF CITATIONS
SEARCH DETAIL
...